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Syllabus



Syllabus Syllabus

Syllabus[1]

 2
6

Safety Systems – SIR, Interior Safety, Lighting, Entertainment Systems 
Automotive Diagnostics – Timing Light, Engine Analyzer, On-board 
diagnostics, Off-board diagnostics, Expert Systems 
 
Future Automotive Electronic Systems – Alternative Fuel Engines, 
Collision Avoidance Radar warning Systems, Low tire pressure warning 
system, Radio navigation, Advance Driver Information System 

 
 
REFERENCE BOOKS: 
1. William B. Ribbens: Understanding Automotive Electronics, 6th Edition, 
SAMS/Elsevier Publishing 
 
2.  Robert Bosch GmbH: Automotive Electrics Automotive Electronics 
Systems and Components, 5th edition, John Wiley& Sons Ltd., 2007 

 
 

 
 
 
 
 
 

SEMESTER  – III 
 

ERROR CONTROL AND CODING 
 

Subject Code : 12EC039 IA Marks :   50 
No. of Lecture Hours /week : 04 Exam Hours :   03 
Total no. of Lecture Hours : 52 Exam Marks : 100 

 
Introduction to Algebra:  Groups, Fields, Binary Field Arithmetic, 
Construction of Galois Field GF (2m) and its basic properties, Computation 
using Galois Field GF (2m) Arithmetic, Vector spaces and Matrices.(Ref.1 
Chap.2) 
 
Linear Block Codes: Generator and Parity check Matrices, Encoding 
circuits, Syndrome and Error Detection, Minimum Distance Considerations, 
Error detecting and Error correcting capabilities, Standard array and 
Syndrome decoding, Decoding circuits, Hamming Codes, Reed – Muller 
codes, The (24, 12) Golay code, Product codes and Interleaved codes.(Ref.1 
Chap.3) 
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Syllabus Syllabus

 2
7

Cyclic Codes: Introduction, Generator and Parity check Polynomials, 
Encoding using Multiplication circuits, Systematic Cyclic codes – Encoding 
using Feed back shift register circuits, Generator matrix for Cyclic codes, 
Syndrome computation and Error detection, Meggitt decoder, Error trapping 
decoding, Cyclic Hamming codes, The (23, 12) Golay code, Shortened cyclic 
codes.(Ref.1 Chap.5) 
 
BCH Codes: Binary primitive BCH codes, Decoding procedures, 
Implementation of Galois field Arithmetic, Implementation of Error 
correction. Non – binary BCH codes: q – ary Linear Block Codes, Primitive 
BCH codes over GF (q), Reed – Solomon Codes, Decoding of Non – Binary 
BCH and RS codes: The Berlekamp - Massey Algorithm.(Ref.1 Chap.6) 
Majority Logic Decodable Codes: One – Step Majority logic decoding,   
one – step Majority logic decodable Codes, Two – step Majority logic 
decoding, Multiple – step Majority logic decoding.(Ref.1 Chap.8) 
 
Convolutional Codes: Encoding of Convolutional codes, Structural 
properties, Distance properties, Viterbi Decoding Algorithm for decoding, 
Soft – output Viterbi Algorithm, Stack and Fano sequential decoding 
Algorithms, Majority logic decoding(Ref.1 Chap.11) 
 
Concatenated Codes & Turbo Codes: Single level Concatenated codes, 
Multilevel Concatenated codes, Soft decision Multistage decoding, 
Concatenated coding schemes with Convolutional Inner codes, Introduction 
to Turbo coding and their distance properties, Design of Turbo codes.(Ref.1 
Chap.15) 
 
Burst – Error – Correcting Codes: Burst and Random error correcting 
codes, Concept of Inter – leaving, cyclic codes for Burst Error correction – 
Fire codes, Convolutional codes for Burst Error correction.(Ref.1 Chap.21) 

 
REFERENCE BOOKS: 

 
1.Shu Lin & Daniel J. Costello, Jr. “Error Control Coding ” Pearson / 
Prentice Hall, Second Edition, 2004. (Major Reference) 
2.Blahut, R.E. “Theory and Practice of Error Control Codes”  

       Addison Wesley, 1984 
 

ELECTIVE – III 
 

SIMULATION MODELING AND ANALYSIS 
 
Subject Code : 12EC128 IA Marks :   50 

No. of Lecture Hours/Week : 04  Exam Hours :   03 
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Overview

1 Groups

2 Fields

3 Binary Field Arithmetic

4 Construction of Galois Field GF (2m) and its basic properties

5 Computation using Galois Field GF (2m) Arithmetic

6 Vector spaces and Matrices
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Groups Groups

Groups

Let G be a set of elements.

A binary operation ∗ on G is a rule that assign to each pair of
elements a and b a uniquely defined third element c = a ∗ b in G .

Definition 1.1: A group is a set G with a binary operation ∗ is defined.

The binary operation takes any two elements in G and generates as
its result an element that is also in G . Hence G is closed under ∗.
The operation must satisfy the following conditions if G is a group.

i The binary operation is Associative: (a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a, b, c ∈ G

ii G contains an element such that, for any a in G
a ∗ e = e ∗ a = a (Identity)

iii For any element a in G exits a such that a ∗ a′ = a′ ∗ a = e
(Inverse)

A group is said to be commutative (or abelian) if it also satisfies
Commutativity: for all a, b ∈ G , a ∗ b = b ∗ a
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Groups Order

Order: The number of elements in a group. It is denoted as |G |.

The integers with addition as the operation, 0 is the identity element,
and −i as the inverse of i , form a group.

The non-zero rational numbers with multiplication is the operation, 1
is the identity element, and b/a is the inverse of a/b, form a group.

Example 1.1

Consider the set of two integers, G = {0, 1}. Let us define a binary
operation, denoted by ⊕, on G as follows:

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0

This binary operation is called modulo-2 addition.

The set G = {0, 1} is a group under modulo-2 addition.

It follows from the definition of modulo-2 addition ⊕ that G is closed
under ⊕.

0 is the identity element and the inverse of 0 is itself and the inverse
of 1 is also itself.

It is easy to show that ⊕ is associative and commutative.

Thus, G together with ⊕ is a commutative group.
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Groups Order

Example 1.2

Let m be a positive integer. Consider the set of integer
G = {0, 1, 2, ...,m − 1}. Let + denote real addition.

Define a binary operation � (Boxplus) on G as follows:

For any integers i and j in G , i � j = r , where r is the remainder
resulting from dividing i + j by m.

The remainder r is an integer between 0 and m − 1 (Euclids division
algorithm) and is therefore in G .

Hence G is closed under the binary operation �, called modulo-m
addition.

First we see that 0 is the identity element.

For 0 < i < m, i and m − i are both in G. Since
i + (m − i) = (m − i) + i = m

It follows from the definition of modulo-m addition that
i � (m − i) = (m − i) � i = 0 Therefore, i and m − i are inverses to
each other with respect to �.
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Groups Order

It is also clear that the inverse of 0 is itself.

Since real addition is commutative, it follows from the definition of
modulo-m addition that, for any integers i and j in G , i � j = j � i .

Therefore modulo-m addition is commutative.

Next we show that modulo-m addition is also associative.

Let i , j , and k be three integers in G. Since real addition is
associative, we have

i + j + k = (i + j) + k = i + (j + k)

Dividing i + j + k by m, we obtain i + j + k = qm + r , where q and r
are the quotient and the remainder, respectively.

Now, dividing i + j by m, we have

i + j = q1m + r1 (1)

, with 0 ≤ r1 < m

Therefore, i � j = r1. Dividing r1 + k by m, we obtain
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Hence r1 � k = r2 and (i � j) � k = r2. Combining (1) and (2), we
have i + j + k = (q1 + q2)m + r2,

This implies that r2 is also the remainder when i + j + k is divided by
m. Since the remainder resulting from dividing an integer by another
integer is unique, we must have r2 = r . As a result, we have

(i � j) � k = r .

Similarly, we can show that i � (j � k) = r . Therefore
(i � j) � k = i � (j � k) and modulo-m addition is associative.

This concludes our proof that the set G = {0, 1, 2, ...,m − 1} is a
group under modulo-m addition. We shall call this group an additive
group.
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Let m be a positive integer. Consider the set of integer
G = {0, 1, 2, ...,m − 1}. 0 is the identity element it turns out that for any
a in the set there is some b such that a� b = 0, so inverse exist.
Modulo-m addition for the case m = 5 is as shown in in table 2:

the inverse of 0 is 0: 0 � 0 = 0

the inverse of 1 is 4: 1 � 4 = 5 = 5 mod 5

the inverse of 2 is 3: 2 � 3 = 5 = 5 mod 5

the inverse of 3 is 2: 3 � 2 = 5 = 5 mod 5

the inverse of 4 is 1: 4 � 1 = 5 = 5 mod 5

Table: Modulo-5 addition

� 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
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Example 1.3:

Let p be a prime (e.g. p = 2, 3, 5, 7, 11, ...).

Consider the set of
integers, G = {1, 2, ..., p − 1}. Let · denote real multiplication.

Define a binary operation � on G as follows: For i and j in G ,

i � j = r

where r is the remainder resulting from dividing i · j by p.

The set G = {1, 2, ..., p − 1} is a group under modulo-p
multiplication.

First we note that i · j is not divisible by p.

Hence 0 < r < p and r is an element in G .

Therefore, the set G is closed under the binary operation �, referred
to as modulo-p multiplication.

We can easily check that modulo-p multiplication is commutative and
associative. The identity element is 1.

The only thing left to be proved is that every element in G has an
inverse.
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Commutative i � j = j � i

Associative i � (j � k) = (i � j) � k
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Let i be an element in G. Since p is a prime and i < p, i and p must
be relatively prime (i.e. i and p don’t have any common factor great
than 1).

It is well known that there exist two integers a and b such that

a · i + b · p = 1 (3)

and a and p are relatively prime (Euclids theorem). Rearranging

a · i = −b · p + 1 (4)

This says that when a · i is divided by p, the remainder is 1.

If 0 < a < p, a is in G and it follows from (4) and the definition of
modulo-p multiplication that .

a� i = i � a = 1
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Therefore a is the inverse of i . However, if a is not in G, we divide a
by p ,

a = q · p + r (5)

.

Since a and p are relatively prime, the remainder r cannot be 0 and it
must be between 1 and p − 1.

Therefore r is in G. Now combining (4) and (5), we obtain

r · i = −(b + qi)p + 1.

Therefore r � i = i � r = 1 and r is the inverse of i. Hence any
element i in G has an inverse with respect to modulo-p multiplication.

The group G = {1, 2, ..., p − 1} under modulo-p multiplication is
called a multiplicative group.

If p is not a prime, the set G = {1, 2, ..., p − 1} is not a group under
modulo-p multiplication
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Let p be any prime. G={1,2,3,.....p-1} is a group under the operation of
modulo-p multiplication: 1 is the identity element it turns out that for any
a in the set there is some b such that a · b = 1, so inverse exist.
Modulo-p multiplication for the case p = 5 is as shown in in table 2:

the inverse of 1 is 1: 1 × 1 = 1

the inverse of 2 is 3: 2 × 3 = 6 = 1 mod 5

the inverse of 3 is 2: 3 × 2 = 6 = 1 mod 5

the inverse of 4 is 4: 4 × 4 = 16 = 1 mod 5

Table: Modulo-5 multiplicaiton

� 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
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Cyclic groups

In the previous group, the element 3 is called a generator: if we look
at the sequence

3, 3·3; 3·3·3, .....

we reach every element of the group: the sequence is the same as

3, 4, 2, 1, 3, 4, 2, 1, ....

Because multiplying by 3 takes us round and round this loop, hitting
all the elements as we go, the group is called cyclic.
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Abelian groups

A group is called Abelian if its binary operation is commutative: that
is, if

a ∗ b = b ∗ a

for all a and b in the group.

All the groups we’ve seen that are based on addition or multiplication
of numbers are Abelian, because addition and multiplication are
themselves commutative.
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Examples of groups

The integers with addition as the operation, 0 as the (identity) unit,
and ..n as the inverse of n, form a group.

The non-zero rational numbers with multiplication as the operation, 1
as the unit, and 1/x as the inverse of x, form a group.
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Non-examples of groups! Some non-examples:

The natural numbers with addition as the operation do not form a
group because there’s no inverse for any n > 0.

The integers with multiplication do not form a group because no
number other than 1 has an inverse.

The rationals with multiplication do not form a group because 0 has
no inverse.
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Groups Subgroup

Subgroup

Def: Let H be a nonempty subset of G. The subset H is said to be a
subgroup of G if H is a closed under the group operation of G and
satisfies all the conditions of a group.

For example the set of all rational numbers is a group under real
addition.

The set of all integers is a subgroup of the group of rational numbers
under real addition.

A subgroup of G that is not identical to G is called a proper subgroup
of G

Theorem 2.3: Let G be a group under the binary operation ∗. Let H
be a nonempty subset of G. Then H is a subgroup of G if the
following conditions hold:

i H is closed under the binary operation ∗.
ii For any element a in H, the inverse of a is also in H.
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Groups Coset

Coset
Proof:

Condition (ii) says that every element of H has an inverse in H.
Condition (i) & (ii) ensure that the identity element of G is also in H
(a ∗ a′ = e is an element of H).

Because the elements in H are elements in G, the associative
condition on ∗ holds automatically.

H satisfies all the conditions of a group and is a subgroup of G.

Definition 2.2: Let H be a subgroup of a group G with binary
operation ∗. Let a be an element of G.

Then the set of elements is called a a ∗ aH ∆
= (a ∗ ah : h ∈ H) is called

a left coset of H; the set of elements is called a right coset of H.

If the group G is commutative, then every left coset is identical to
every right coset.
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Groups Coset

Coset
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Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}

The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is

7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}

7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}

We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}

1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}

2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}

There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Consider the additive group G={ 0,1,2,.,, .,15} under modulo-16.
H={0,4,8,12} forms a subgroup of G.

The coset 3 � H is

3 � H = {3 � 0, 3 � 4, 3 � 83 � 12} 3 � H = {3, 7, 11, 15}
The coset 7 � H is
7 � H = {7 � 0, 7 � 4, 7 � 87 � 12}7 � H = {7, 11, 15, 3}
We find that 3 � H = 7 � H. There are only four distinct cosets of H
Besides 3 � H

0 � H = {0, 4, 8, 12}
1 � H = {1, 5, 9, 13}
2 � H = {2, 6, 10, 14}
There are only four distinct cosets of H. The four distinct cosets of H
are disjoint, and their union forms the entire group G.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 24 / 85



Groups Coset

Theorem 2.4: Let H be a subgroup of a group G with binary
operation ∗. No two elements in a coset of H are identical.

The proof is based on the fact that all the elements in the subgroup
H are distinct. Consider the coset a ∗ H = {a ∗ h :∈ H} witha ∈ G .

Suppose two elements, say a ∗ h and a ∗ h′, in a*H are identical,
where h and h’ are two distinct elements in H. Let a−1 denote the
inverse of a with respect to the binary operation ∗. Then

a−1 ∗ (a ∗ h) = a−1 ∗ (a ∗ h′)
(a−1 ∗ a) ∗ h = (a−1 ∗ a) ∗ h′)

e ∗ h = e ∗ h′h = h′

This result is a contradiction to the fact that all the elements of H are
distinct. Therefore, no two elements in a coset are identical.
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Groups Coset

2.5: No two elements in two different cosets of a subgroup H of a group G
are identical. Proof: Let a*H and b*H be two distinct cosets of H, with a
and b in G. Let a*h and b*h be two elements in a*H and b*H, respectively.
Suppose a ∗ h = b ∗ h′. Let h−1 be the inverse of h.

(a ∗ h) ∗ h−1 = (b ∗ b′) ∗ h−1

a ∗ (h ∗ h−1) = b ∗ (b′ ∗ h−1)

a ∗ e = b ∗ h′′

a = b ∗ h′′

where (h′′ = h ∗ h−1) is an element in H. a = b ∗ h′′ implies that

a ∗ H = (b ∗ b′′) ∗ H
= {(b ∗ h′′) ∗ h : h ∈ H} = {b ∗ (h′′ ∗ h) : h ∈ H}
= {b ∗ h′′′ : h′′′ ∈ H} = b ∗ H

This result says that a*H and b*H are identical, which is a contradiction
to the given condition that a*H and b*H are two distinct cosets of H.
Therefore, no two elements in two distinct cosets of H are identical.
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Groups Coset

From Theorem 2.4 and 2.5, we obtain the following properties of cosets of
a subgroup H of a group G:

i Every element in G appears in one and only one coset of H;

ii All the distinct cosets of H are disjoint;

iii The union of all the distinct cosets of H forms the group G.

All the distinct cosets of a subgroup H of a group G form a partition of G,
denoted by G/H.
Lagranges Theorem: Let G be a group of order n, and let H be a subgroup
of order m. Then m divides n, and the partition G/H consists of n/m
cosets of H.
Proof: Every coset consists of m elements of G. Let i be the number of
distinct cosets of H. Since n=im, m divides n and i=n/m.
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Fields Fields

Fields
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Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined. The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined. The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined.

The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined. The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined. The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined. The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined. The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

A field is a set of elements in which addition, subtraction, multiplication, and division is
performed without leaving the set.

Addition and multiplication must satisfy the commutative, associative, and distributive
laws.

Definition: Let F be a set of elements on which two binary operations, called addition

“+” and multiplication “.”are defined. The set F together with the two binary operations

“+” and “.” is a field if the following conditions are satisfied:

1 F is a commutative group under addition +.
The identity element with respect to addition is called the zero element i.e., 0.

2 The set of nonzero elements in F is a commutative group under multiplication.
The identity element with respect to multiplication is called the unit element i.e., 1.

3 Multiplication is distributive over addition; that is, for any three elements a, b, and

c in F,

a · (b + c) = a · b + a · c

These properties can, be satisfied if the field size is any prime number or any integer
power of a prime.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 29 / 85



Fields Fields

The number of elements in a field is called the order of the field.

A field with finite number of elements is called a finite field or Galois
Field, denoted by GF(p), p can be a prime number or power of prime.

In a field, the additive inverse of an element a is denoted by −a and
the multiplicative inverse of a is denoted by a−1 provided that a 6= 0.

Subtracting a field element b from another field element a is defined

as adding the additive inverse −b of b to a. [a− b
∆
= a + (−b)].

If b is a nonzero element, dividing a by b is defined as multiplying a

by the multiplicative inverse b−1 of b . [a÷ b
∆
= a · b−1)]

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 30 / 85



Fields Fields

The number of elements in a field is called the order of the field.

A field with finite number of elements is called a finite field or Galois
Field, denoted by GF(p), p can be a prime number or power of prime.

In a field, the additive inverse of an element a is denoted by −a and
the multiplicative inverse of a is denoted by a−1 provided that a 6= 0.

Subtracting a field element b from another field element a is defined

as adding the additive inverse −b of b to a. [a− b
∆
= a + (−b)].

If b is a nonzero element, dividing a by b is defined as multiplying a

by the multiplicative inverse b−1 of b . [a÷ b
∆
= a · b−1)]

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 30 / 85



Fields Fields

The number of elements in a field is called the order of the field.

A field with finite number of elements is called a finite field or Galois
Field, denoted by GF(p), p can be a prime number or power of prime.

In a field, the additive inverse of an element a is denoted by −a and
the multiplicative inverse of a is denoted by a−1 provided that a 6= 0.

Subtracting a field element b from another field element a is defined

as adding the additive inverse −b of b to a. [a− b
∆
= a + (−b)].

If b is a nonzero element, dividing a by b is defined as multiplying a

by the multiplicative inverse b−1 of b . [a÷ b
∆
= a · b−1)]

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 30 / 85



Fields Fields

The number of elements in a field is called the order of the field.

A field with finite number of elements is called a finite field or Galois
Field, denoted by GF(p), p can be a prime number or power of prime.

In a field, the additive inverse of an element a is denoted by −a and
the multiplicative inverse of a is denoted by a−1 provided that a 6= 0.

Subtracting a field element b from another field element a is defined

as adding the additive inverse −b of b to a. [a− b
∆
= a + (−b)].

If b is a nonzero element, dividing a by b is defined as multiplying a

by the multiplicative inverse b−1 of b . [a÷ b
∆
= a · b−1)]

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 30 / 85



Fields Fields

The number of elements in a field is called the order of the field.

A field with finite number of elements is called a finite field or Galois
Field, denoted by GF(p), p can be a prime number or power of prime.

In a field, the additive inverse of an element a is denoted by −a and
the multiplicative inverse of a is denoted by a−1 provided that a 6= 0.

Subtracting a field element b from another field element a is defined

as adding the additive inverse −b of b to a. [a− b
∆
= a + (−b)].

If b is a nonzero element, dividing a by b is defined as multiplying a

by the multiplicative inverse b−1 of b . [a÷ b
∆
= a · b−1)]

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 30 / 85



Fields Fields

GF(2), p=2 GF(2)={0,1} is a binary set.

Modulo-2 addition for GF(2), additive identity: 0

Table: Modulo-2 addition

⊕ 0 1

0 0 1
1 1 0

Modulo-2 multiplication for GF(2),multiplicative identity: 1

Table: Modulo-2 multiplication

· 0 1

0 0 0
1 0 1
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Fields Modulo-3 addition

Consider GF(3), p=3 GF(3)={0,1,2}. additive
identity is: 0, multiplicative identity is: 1
In GF(3), the additive inverse of 0 is 0, and the
additive inverse of 1 is 2 and vice versa. The
multiplicative inverse can be found by identifying
from the table pairs of elements whose product
is 1 . In the case of GF(3), we see that
the multiplicative inverse of 1 is 1 and the
multiplicative inverse of 2 is 2.
commutative, associative, and distributive
Additive a+b=b+a 1+2=2+1=0
Associative a+(b+c)=(a+b)+c=0+1+2=

Table: Modulo-3 addition

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Table: Modulo-3 multiplication

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
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Fields Modulo-7

GF(7), here p=7 GF(7)={0,1,2,3,4,5,6}. additive identity: 0,
multiplicative identity: 1

Table: Modulo-7 addition

⊕ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Table: Modulo-7 multiplication

· 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 33 / 85



Fields Modulo-7

The addition table shown above is used also for subtraction.
For example , if we want to subtract 6 from 3 , we first use the
addition table to find the additive inverse of 6, which is 1.
Then we add 1 to 3 to obtain the result [ i.e., 3-6=3+(-6)=3+1=4].
For division, we use the multiplication table.
Suppose that we divide 3 by 2. We first find the multiplicative inverse
of 2, which is 4, and then we multiply 3 by 4 to obtain the result
,[i.e., 3÷ 2 = 3.(2−1) = 3.4 = 5].
For any prime p, there exist a finite field of p elements.
For any positive integer m it is possible to extend the prime field
GF(p) to a field of pm elements, which is called an extension field of
GF(p) and is denoted by GF (pm)
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Fields Modulo-7

Def: Primitive

In a finite field Gf(q), a nonzero element a is said to be primitive if
the order of a is q − 1

The powers of a primitive element generate all the nonzero elements
of GF(q).

Every finite field has a primitive element.

Primitive elements are useful for constructing fields.

Example. In GF(7) 3 is a primitive element.
31 = 3, 32 = 3.3 = 2, 33 = 3.32 = 6, 34 = 3.33 = 4, 35 = 3.34 = 5,
36 = 3.35 = 1
Therefore, the order of the integer 3 is 6, and the integer 3 is a primitive
element of GF(7),
41 = 4, 42 = 4.4 = 2, 43 = 4.42 = 1
Clearly, the order of the integer 4 is 3, which is factor of 6.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 35 / 85



Fields Modulo-7

Def: Primitive

In a finite field Gf(q), a nonzero element a is said to be primitive if
the order of a is q − 1

The powers of a primitive element generate all the nonzero elements
of GF(q).

Every finite field has a primitive element.

Primitive elements are useful for constructing fields.

Example. In GF(7) 3 is a primitive element.
31 = 3, 32 = 3.3 = 2, 33 = 3.32 = 6, 34 = 3.33 = 4, 35 = 3.34 = 5,
36 = 3.35 = 1
Therefore, the order of the integer 3 is 6, and the integer 3 is a primitive
element of GF(7),
41 = 4, 42 = 4.4 = 2, 43 = 4.42 = 1
Clearly, the order of the integer 4 is 3, which is factor of 6.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 35 / 85



Fields Modulo-7

Def: Primitive

In a finite field Gf(q), a nonzero element a is said to be primitive if
the order of a is q − 1

The powers of a primitive element generate all the nonzero elements
of GF(q).

Every finite field has a primitive element.

Primitive elements are useful for constructing fields.

Example. In GF(7) 3 is a primitive element.
31 = 3, 32 = 3.3 = 2, 33 = 3.32 = 6, 34 = 3.33 = 4, 35 = 3.34 = 5,
36 = 3.35 = 1
Therefore, the order of the integer 3 is 6, and the integer 3 is a primitive
element of GF(7),
41 = 4, 42 = 4.4 = 2, 43 = 4.42 = 1
Clearly, the order of the integer 4 is 3, which is factor of 6.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 35 / 85



Fields Modulo-7

Def: Primitive

In a finite field Gf(q), a nonzero element a is said to be primitive if
the order of a is q − 1

The powers of a primitive element generate all the nonzero elements
of GF(q).

Every finite field has a primitive element.

Primitive elements are useful for constructing fields.

Example. In GF(7) 3 is a primitive element.
31 = 3, 32 = 3.3 = 2, 33 = 3.32 = 6, 34 = 3.33 = 4, 35 = 3.34 = 5,
36 = 3.35 = 1
Therefore, the order of the integer 3 is 6, and the integer 3 is a primitive
element of GF(7),
41 = 4, 42 = 4.4 = 2, 43 = 4.42 = 1
Clearly, the order of the integer 4 is 3, which is factor of 6.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 35 / 85



Fields Modulo-7

Def: Primitive

In a finite field Gf(q), a nonzero element a is said to be primitive if
the order of a is q − 1

The powers of a primitive element generate all the nonzero elements
of GF(q).

Every finite field has a primitive element.

Primitive elements are useful for constructing fields.

Example. In GF(7) 3 is a primitive element.
31 = 3, 32 = 3.3 = 2, 33 = 3.32 = 6, 34 = 3.33 = 4, 35 = 3.34 = 5,
36 = 3.35 = 1
Therefore, the order of the integer 3 is 6, and the integer 3 is a primitive
element of GF(7),
41 = 4, 42 = 4.4 = 2, 43 = 4.42 = 1
Clearly, the order of the integer 4 is 3, which is factor of 6.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 35 / 85



Binary Field Arithmetic Binary Field Arithmetic

Binary Field Arithmetic

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 36 / 85



Binary Field Arithmetic Binary Field Arithmetic

Historical Notes

Galois fields are named in honor of the French

mathematician Evariste Galois (1811 1832)

who was killed in a duel at the age of 20.

On the eve of his death, he wrote a letter to

his friend in which he gave the results of his

theory of algebraic equations, already

presented to the Pairs Academy.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 37 / 85



Binary Field Arithmetic Binary Field Arithmetic

Historical Notes

Galois fields are named in honor of the French

mathematician Evariste Galois (1811 1832)

who was killed in a duel at the age of 20.

On the eve of his death, he wrote a letter to

his friend in which he gave the results of his

theory of algebraic equations, already

presented to the Pairs Academy.

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 37 / 85



Binary Field Arithmetic Binary Field Arithmetic

Remarks

1 Galois fields are important in the study of cyclic codes, a special class
of block codes. In particular, they are used for constructing the
well-known random error correcting BCH and Reed-Solomon Codes.

2 GF(2m ) is an extension field of GF(2).

3 Every Galois field of 2m elements is generated by a binary primitive
polynomial of degree m.
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Binary Field Arithmetic Binary Field Arithmetic

In general, we can construct codes with symbols from any Galois field
GF(q), where q is either a prime p or a power of p; however,codes with
symbols from the binary field GF(2) or its extension GF (2m) are most
widely used in digital data transmission and storage systems.
In binary arithmetic, we use modulo-2 addition and multiplication .
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Binary Field Arithmetic Binary Field Arithmetic

Sets of equations e.g. X+Y=1, X+Z=0, X+Y+Z=1 Solved by Cramers
rule ∣∣∣∣∣∣

1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣ = 1

∣∣∣∣ 0 1
1 1

∣∣∣∣− 1

∣∣∣∣ 1 1
1 1

∣∣∣∣+ 0

∣∣∣∣ 1 0
1 1

∣∣∣∣
= 1.1− 1.0 + 0.1 = 1
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Binary Field Arithmetic Binary Field Arithmetic

x =

∣∣∣∣∣∣
1 1 0
0 0 1
1 1 1

∣∣∣∣∣∣
∆

=
0

1
= 0

y =

∣∣∣∣∣∣
1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣
∆

=
1

1
= 1

z =

∣∣∣∣∣∣
1 1 0
1 0 0
1 1 1

∣∣∣∣∣∣
∆

=
0

1
= 0
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Binary Field Arithmetic Binary Field Arithmetic

g(x) = g0 + g1x + g2x + ...+ gmx
m m ≤ n

Added (or subtracted)
f (x)g(x) = (f0 + g0) + (f1 + g1)x + ...(fm + gm)xm + fm+1xm+1 + ...(fn)xn

Multiplied
f (x) · g(x) = c0 + c1x + ...+ cn+mx

n+m

ci = f0gi + f1gi−1 + ...+ fig0(c0 = f0g0 cn+m = fngm)
If g(x) = 0, then f(x) 0 = 0

i Commutative
f (x) + g(x) = g(x) + f (x)
f (x) · g(x) = g(x) · f (x)

ii Associative
f (x) + [g(x) + h(x)] = [f (x) · g(x)] + [f (x) · h(x)]
f (x) · [g(x) · h(x)] = [f (x) · g(x)] · h(x)]

iii Distributive
f (x) · [g(x) + h(x)] = [f (x) + g(x)] + h(x)]
f (x) · [g(x) · h(x)] = [f (x) · g(x)] · h(x)]
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Binary Field Arithmetic Binary Field Arithmetic

Polynomials over GF(2). We denote it GF(2).

f (x) = f0 + f1x + f2x
2 + ...+ fnx

n

where fi = 0 or 1 for 0 ≤ i ≤ n

The degree of a polynomial is the largest power of X with nonzero
coefficient.

if fn = 1, deg[f (x)] = n

if f1 = ...fn = 0, f0 = 1 deg[f (x)] = 0

A polynomial with coefficients from the binary field GF(2) is called a
binary polynomial.

e.g. 1 + x2 and 1 + x3 + x5 are binary polynomials.

Polynomials over GF(2) with degree = 1 are x , 1 + x

Polynomials over GF(2) with degree = 2 are

x2, 1 + x2, x + x2, 1 + x + x2

In general, with degree = n we have 2n polynomials.

Polynomials over GF(2) can be added (or subtracted), multiplied, and
divided in the usual way.
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Binary Field Arithmetic Binary Field Arithmetic

Add a(x) = 1 + x + x3 + x5 and b(x) = 1 + x2 + x3 + x4 + x7

a(x) + b(x) = (1 + 1) + x + x2 + (1 + 1)x3 + x4 + x5 + x7

For multiplication f(x) and g(x)

f (x).g(x) = c0 + c1X + c2X
2 + . . .+ cn+mX

n+m
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Binary Field Arithmetic Binary Field Arithmetic

Divide f (x) = 1 + x + x4 + x5 + x6 by f (x) = 1 + x + x3 using long
division technique

x3 + x2

x3 + x + 1)x6 + x5 + x4 + x + 1
x6 + x4 + x3

.........................................................
x5 + x3 + x + 1
x5 + x3 + x2
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Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

Suppose the degree of g(x) is not zero, and f(x) is divided by g(x)
then a pair of polynomials are obtained over GF(2)-q(x) called the
quotient, and r(x) called the remainder.

f(x)=q(x)g(x)+r(x)

The degree of r(x) is less than that of g(x)

When f(x) is divisible by g(x), if the remainder r(x) is identical to zero
[r(x)=0] then it is said that f(x) is divisible by g(x) and g(x) is a
factor of f(x)

p(x) ∈ GF (2) [x] with deg[p(x)]=m is said to be irreducible over
GF(2) if p(x) is not divisible by any polynomial over GF(2) of degree
less than m but greater than zero.

e.g. 1 + x + x2 , 1 + x + x3 , 1 + x2 + x5 and 1 + x + x5 are
irreducible polynomials.

For any positive integer m ≥ 1, there exists at least one irreducible
polynomial of degree m.

For a polynomial f(x), if the polynomial has an even number of terms,
it is divisible by x+1

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 46 / 85



Binary Field Arithmetic Binary Field Arithmetic

For real numbers if a is root of a polynomial f(x) [f(a)=0]. f(x) is
divisible by x-a [x+a]

Consider f (x) = 1 + X 2 + X 3 + X 4

f (1) = 1 + 12 + 13 + 14=1+1+1+1=0 Thus f(x) has 1 as a root ,
and it should be divisible by x+1

x3 + x2 + 1

x + 1)x4 + x3 + x2 + 1
x4 + x3

.........................................................
x2 + 1
x2 + x

.........................................................
x + 1
x + 1

.........................................................
0
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Binary Field Arithmetic Binary Field Arithmetic

Primitive

An irreducible polynomial p(x) of degree m is said to be primitive if
the smallest positive integer n for which p(x) divides xn + 1 is
n = 2m − 1.

p(x) = x4 + x + 1 divides x15 + 1 but does not divide any xn + 1 for
1 ≤ n ≤ 15. Hence p(x) = x4 + x + 1 is primitive polynomial.

For a given m > 0, there may be more than one primitive polynomials
of degree n.

For example, 1 + x + x4 is a primitive polynomial. The smallest
positive integer n for which 1 + x + x4 divides xn + 1 is
n = 24 − 1 = 15
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m Primitive Polynomial

3 1 + x + x3

4 1 + x + x4

5 1 + x2 + x5

6 1 + x + x6

7 1 + x3 + x7

8 1 + x2 + x3 + x4 + x8

9 1 + x + x9

10 1 + x + x10

11 1 + x2 + x11

12 1 + x + x4 + x6 + x12

13 1 + x + x3 + x4 + x13
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Any irreducible polynomial over GF(2) of degree m, divides x2m−1 + 1

x3 + x + 1 divides x23−1 + 1 = x7 + 1

x4 + x2 + x + 1

x3 + x + 1)x7 + 1
x7 + x5 + x4

.........................................................
x5 + x4 + 1
x5 + x3 + x2

.........................................................
x4 + x3 + x2 + 1
x4 + x2 + x

.........................................................
x3 + x + 1
x3 + x + 1

.........................................................
0
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Construction of Galois Field Construction of Galois Field

Construction of Galois Field GF (2m)
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Construction of Galois Field Construction of Galois Field

Consider two elements 0 and 1 from GF(2) and a new symbol α

Define multiplication “.”

0.0 = 0

0.1 = 0

1.0 = 0

1.1 = 1

0.α = α.0 = 0

1.α = α.1 = α

α
2 = α.α

α
3 = α.α.α

.

.

.

α
3 = α.α. . . . .α(j times)

0.αj = α
j
.0

1.αj = α
j
.1 = α

j

α
i
.α

j = α
j
.α

i = α
i+j

The set of elements on which a multiplication “.” is

F = (0, 1, α, α2
. . . α

j
. . .)
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Construction of Galois Field Construction of Galois Field

Let p(X) be positive polynomial of degree m over GF(2). Assume that p(α) = 0 where p(α) is root of p(X)

Then p(X) divides X 2m−1 + 1

X 2m−1 + 1 = q(x)p(x) (6)

Replace X with α

α
2m−1 + 1 = q(α)p(α)

and p(α) = 0

α
2m−1 + 1 = q(α).0

If we regard q(α) as a polynomial of over α over GF (2) q(α).0 = 0

α
2m−1 + 1 = 0

Adding 1 on both sides

α
2m−1 = 1

Therefore, under the condition that p(α) = 0 the set F becomes finite and contains the following elements:

F∗ = (0, 1, α, α2
,

.

.

.α2m−2)

The nonzero elements of F∗ are closed under the multiplication operation “.”
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Construction of Galois Field
Let m=4. The polynomial p(x) = 1 + x + x4 is a primitive polynomial
over GF(2).

Set p(α) = 1 + α + α4 = 0, α4 = 1 + α. Using this relation GF (24) is
constructed.
α5 = α.α4 = α(1 + α) = α+ α2,α6 = α.α5 = α(α+ α2) = α2 + α3,α7 =
α.α6 = α(α2 +α3) = α3 +α4 = α3 + 1 +α = 1 +α+α3,To multiply two
elements αi ∗ αj their exponents are added.α5 ∗ α7 = α12,
α12 ∗ α7 = α19For division αj , by αi , multiply αj by the multiplicative
inverse α15−i .Example. α4/α12 = α4 ∗ α3 = α7

α12/α5 = α12 ∗ α10 = α22 = α7

To add αi and αj polynomial representation given in table is used.
Example. α5 + α7 = (α + α2) + (1 + α + α3) = 1 + α2 + α3 = α13

1 + α5 + α10 = 1 + (α + α2) + (1 + α + α2) = 0
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Power Polynomial 4− Tuple
representation representation representation

0 0 (0000)
1 1 (1000)
α α (0100)
α2 α2 (0010)
α3 α3 (0001)
α4 1 + α (1100)
α5 α + α2 (0110)
α6 α2 + α3 (0011)
α7 1 + α + α3 (1101)
α8 1 + α2 (1010)
α9 α + α3 (0101)
α10 1 + α2 + α3 (1110)
α11 α + α2 + α3 (0111)
α12 1 + α + α2 + α3 (1111)
α13 1 + α2 + α3 (1011)
α14 1 + α3 (1001)
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Basic Properies of a Galois Field GF (2m)
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In ordinary algebra a polynomial with real coefficients has roots not from the field of real numbers but from the field of complex
numbers

X 2 + 6X + 25

does not have roots from the real numbers but has two complex conjugate roots

−6±
√

36− 100

2

-3+4i and -3-4i
In case of polynomial with coefficients from GF (2) may not have roots from GF (2) but has roots from an extension field of
GF (2).

Consider X 4 + X 4 + 1 is irreducible over GF (2) and therefore it does not have roots from GF (2)

It has four roots which are α7, α11, α13, and α14

(α7)4 + (α7)3 + 1 = (1 + α
2 + α

3) + (α2 + α
3) + 1 = 0
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α7, α11, α13 and α14 are the other roots of f (x)

(X + α
7)(X + α

11)(X + α
13)(X + α

14)

= [X 2 + (α7 + α
11)X + α

18][X 2 + (α13 + α
14)X + α

27]

= (X 2 + α
8X + α

3)(X 2 + α
2X + α

12]

= X 4 + (α8 + α
2)X 3 + (α12 + α

10 + α
3)X 2 + (α20X + α

5)X + α
15

= X 4 + X 3 + 1

(X + α
7)(X + α

11)(X + α
13)(X + α

14) =

Theorem: Let f(x) be a polynomial with coefficients from GF(2). Let β be an element in an extension field of GF(2). If β is a

root of f(x), then for any l ≥ 0 β2l is also root of f(x)

f (X ) = 1 + X 3 + X 4 + X 5 + X 6 has α4

The conjugates of α4 are

(α4)2 = α
8
, (α4)22

= α
16 = α, (α4)23

= α
32 = α

2
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Theorem 2.18 Let φ(X ) be the minimal polynomial of an element β in GF (2m). Let e be the smallest integer such that

β2e = β. Then

e−1∏
i=0

(X + β
2i )

Consider a primitive polynomial f (x) = x3 + x + 1 ∈ GF (2)[x] and let α be a root of f(x). Then the elements of GF(8)

0=0, α0 = 1, α1 = α, α2 = α2 α3 = α + 1, α4 = α2 + α α5 = α2 + α + 1, α6 = α2 + 1 (X − α)(X − α2)(X − α4)

= (X 2 − X (α + α
2) + α

3)(X − α4)

= X 3 − X 2(α + α
2) + Xα3 − X 2

α
4 − X (α + α

2)α4 − α7

= X 3 − X 2(α + α
2 + α

4)− X (α5 + α
6 + α

3)− α7

= X 3 − X 2(α + α
2 + α

4)− X (α5 + α
6 + α

3)− α7

= X 3 − X 2(α + α
2 + α

2 + α)− X (α2 + α + 1 + α
2 + 1 + α + 1)− α7

= X 3 + X + 1

Table: Minimal polynomial of the elements in GF (23) generated by f (x) = X 4 + X + 1

Conjugate roots Minimal polynomial
0 M.(x) = x-0 = x

α0 = 1 M0(x) = x -1 = x + 1

α, α2, α4 = 1 M1(x)= (x − α)(x − α2)(x − α4) = x3 + x + 1

α3, α6, α5 = 1 M3(x)= (x − α3)(x − α6)(x − α5) = x3 + x2 + 1
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Consider a primitive polynomial f (x) = X 4 + X + 1 and Galois Field GF (24) let β = α3. The conjugates of β are

β2 = α6, β22=α12, β23=α24 = α9

The minimal polynomial polynomial of β = α3 is then

= (X + α
3)(X + α

6)(X + α
12)(X + α

9)

= [X 2 + (α3 + α
6)X + α

9][X 2 + (α12 + α
9)X + α

21]

= [X 2 + α
2X + α

9][X 2 + α
8X + α

6]

= X 4 + (α2 + α
8)X 3 + (α6 + α

10 + α
9)X 2 + (α17 + α

8)X + α
15

= X 4 + X 3 + X 2 + X + 1

Table: Minimal polynomial of the elements in GF (24) generated by f (x) = X 4 + X + 1

Conjugate roots Minimal polynomial
0 M.(x) = x-0 = x

α0 = 1 M0(x) = x -1 = x + 1

α, α2, α4, α8 = 1 M1(x)= (x − α)(x − α2)(x − α4) = x4 + x + 1

α3, α6, α9, α12 = 1 M3(x)= (x − α3)(x − α6)(x − α5) = x4 + x3 + x2 + x + 1

α5, α10 x2 + x + 1

α7, α11, α13, α14 x4 + x3 + 1

Theorem 2.20 If β is primitive element of GF (2m), all its conjugates β2, β22
are also primitive elements of GF (2m)
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Vector Space
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Vector Space Vector Space

V be a set of elements with a binary operation ‘+′ is defined.

F be a field. A multiplication operator ′·′ between the elements in F
and elements in V is also defined.

The V is called a vector space over the field F if it satisfies the
following conditions:

i V is a commutative group under addition.

ii For any element in v in V a.v is an element in V.

iii (Distributive law) For any elements in u and v in V and any
elements a and b in F.
a · (u + v) = a · u + a · v
(a + b) · v = a · v + b · v

iv (Associative Law) For any v in V and any element a and b in
F
(a · b) · v = a · (b · v)

v Let 1 be the unit element of F Then for nay v in V · 1 · v = v
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Vector Space Vector Space

The elements of V are called vectors and the elements of the field F
are called scalars.

The addition on V is called a vector addition and the multiplication
that combines a scalar in F and a vector in V is referred to as scalar
multiplication (or product)

The additive identity of V is denoted by 0.

Property I. Let 0 be the zero element of the field F. For any vector v
in V, 0 · v = 0.

Property II. For any scalar c in F, c · 0 = 0.

Property III. For any scalar c in F and any vector v in V,
(−c) · v = c · (−v) = −(c · v) i.e., (−c) · v or c · (−v) is the additive
inverse of the vector c · v .
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Vector Space Vector Space

Consider an ordered sequence of n components, (a0, a1, a2, ...an−1),
where each component ai is an element from the binary field GF(2)
(i.e., ai = 0 or 1).

This sequence is called an n-tuple over GF(2).

Since there are two choices for each ai , we can construct distinct
n-tuples.

Let Vn denote this set. Now we define an addition + on as following :
For any u = (u0, u1, u2, ...un−1), and v = (v0, v1, v2, ...vn−1)

u + v = (u0 + v0, u1 + v1, u2 + v2, ...un−1 + vn−1)

where ui + vi is carried out in modulo-2 addition.

u + v is also an n-tuple over GF(2).Closed under addition.

We can readily verify that is a commutative group under the addition
defined by.

we see that allzero n-tuple 0 = (0, 0, ..., 0) is the additive identity. For
any v in, Vn

v + v = (v0 + v0, v1 + v1, ...vn−1 + vn−1) = (0, 0, 0, ...0) = 0
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Vector Space Vector Space

Hence, the additive inverse of each n-tuples in is itself.

Since modulo-2 addition is commutative and associative, the addition
is also commutative and associative.

Therefore, is a commutative group under the addition.

We defined scalar multiplication of an n-tuple v in n V

by an element a from GF(2) as follows :

a.(v0, v1, v2, ...vn−1) = (a.v0, a.v1, a.v2, ...a.vn−1)

where a.vi is carried out in modulo-2 multiplication.

Clearly, a.(v0, v1, v2, ...vn−1) is also an n-tuple in Vn.

If a = 1, 1.(v0, v1, v2, ...vn−1) = (1.v0, 1.v1, 1.v2, ...1.vn−1)

= (v0, v1, v2, ...vn−1)

Vector addition and scalar multiplication satisfy the distributive and
associative laws.

Therefore the set Vn of all n tuples over GF(2)forms a vector space
over over GF(2)
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Vector Space Vector Space

Let n=5. The vector space V5 of all 5 tuples over GF(2) consists of the
following 32 vectors.

(00000),(00001),(00010),(00011),
(00100),(00101),(00110),(00111),
(01000),(01001),(01010),(01011),
(01100),(01101),(01110),(01111),
(10000),(10001),(10010),(10011),
(10100),(10101),(10110),(10111),
(11000),(11001),(11010),(11011),
(11100),(11101),(11110),(11111)
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Vector Space Vector Space

The vector sum of (10111)and (11001) is

(10111)+(11001)=(1+1,0+1,1+0,1+0,1+1)=(01110)

The scalar multiplication is

0.(11010)=(0.1, 0.1, 0.0, 0.1, 0.0)=(00000)

1.(11010)=(1.1, 1.1, 1.0, 1.1, 1.0)=(11010)
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Vector Space Vector Space

Theorem 2.18

Let S be a nonempty subset of a vector space V over a field F. Then
S is a subspace of V if the following conditions are satisfied :

i For any two vectors u and v in S, u + v is also a vector in S.
ii For an element a in F and any vector u in S, a u is also in S.

Conditions (i) and (ii) says that S is closed under vector addition and
scalar multiplication of V.

Condition (ii) ensures that, for any vector v in S, its additive inverse
(-1).v is also in S. Then, v + (-1).v = 0 is also in S.

Therefore, S is a subgroup of V. Since the vectors of S are also
vectors of V, the associative and distributive laws must hold for S.

Hence, S is a vector space over F and is a subspace of V.

Consider the vector space V5 of all 5-tuples over GF(2)The set
{(00000),(00111),(11010),(11101)}
satisfies the conditions of Theorem so it is a subspace of V5
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Vector Space Vector Space

Let v1, v2, . . . , vk be k vectors in a vector space V over a field F.

Let a1, a2, . . . , ak be k scalars from F. The sum

a1v1 + a2v2 + . . .+ akvk

is called a linear combination of v1, v2, . . . , vk . Clearly, the sum of two
linear combinations of a1v1 + a2v2 + . . .+ akvk ,

(a1v1 + a2v2 + . . .+ akvk) + (b1v1 + b2v2 + +bkvk)=
(a1 + b1)v1 + (a2 + b2)v2 + . . .+ (ak + bk)vk

is also a linear combination of v1, v2, . . . , vk , and the product of a
scalar c in F and a linear combination of v1, v2, . . . , vk ,

c .(a1v1 + a2v2 + . . .+ akvk) = (c .a1)v1 + (c .a2)v2 + . . . (c .ak)vk

is also a linear combination of v1, v2, . . . , vk
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Vector Space Vector Space

Consider the vector space V5 of all 5 tuples over GF(2). The linear
combination of (00111) and (11101) are

0.(00111)+0.(11101)=(00000)
0.(00111)+1.(11101)=(11101)
1.(00111)+0.(11101)=(00111)
1.(00111)+1.(11101)=(11010)
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Vector Space Vector Space

Theorem 2.23

Let v1, v2, . . . , vk be k vectors in a vector space V over a field F.

The set of all linear combinations of v1, v2, . . . , vk forms a subspace of
V.

A set of vectors v1, v2, . . . , vk in a vector space V over a field F is said
to be linearly dependent if and only if there exit k scalars
a1, a2, . . . , ak from F, not all zeros, such that

a1v1 + a2v2 + . . .+ akvk = 0

A set of vectors v1, v2, . . . , vk is said to be linearly independent if it is
not linearly dependent. That is, if v1, v2, . . . , vk are linearly
independent, then

a1v1 + a2v2 + . . .+ akvk 6= 0

EX. The vectors (1 0 1 1 0), (0 1 0 0 1), and (1 1 1 1 1) are linearly
dependent since
1.(1 0 1 1 0) + 1.(0 1 0 0 1) + 1.(1 1 1 1 1) = (0 0 0 0 0) However, (1 0
1 1 0), (0 1 0 0 1), and (1 1 1 1 1) are linearly independent.
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Vector Space Vector Space

A set of vectors is said to span a vector space V if every vector in V is
a linear combination of the vectors in the set.

In any vector space or subspace there exits at least one set B of
linearly independent vectors which span the space.

This set is called a basis (or base) of the vector space.

The number of vectors in a basis of a vector space is called the
dimension of the vector space. (Note that the number of vectors in
any two bases are the same.)
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Vector Space Vector Space

0.(10110)+0.(01001)+0.(11011)=(00000)
0.(10110)+0.(01001)+1.(11011)=(11011)
0.(10110)+1.(01001)+0.(11011)=(01001)
0.(10110)+1.(01001)+1.(11011)=(10010)
1.(10110)+0.(01001)+0.(11011)=(10110)
1.(10110)+0.(01001)+1.(11011)=(01101)
1.(10110)+1.(01001)+0.(11011)=(11111)
1.(10110)+1.(01001)+1.(11011)=(00100)
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Vector Space Vector Space

Consider the vector space V5 of 5 tuples over GF(2) given. The
following eight vectors form a three dimensional subspace S of V5

(00000), (11100),(01010),(10001),

(10110),(01101),(11011),(00111)

The null space Sd of S consists of the following four vectors

(00000),(10101),(01110),(11011)

is spanned by (10101) and (01110) which are linearly independent.
Thus the dimension of Sd is 2
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Vector Space Vector Space

Consider the vector space of all n-tuples over GF(2). Let us form the
following n n-tuples: e0 = (1000 . . . 00)
e1 = (0100 . . . 00)
...
en−1 = (0000 . . . 01)

where the n-tuple ei has only nonzero component at ith position.

Then every n-tuple (a0, a1, . . . , an − 1) in V − n can be expressed as
a linear combination of e0, e1 . . . , en − 1 as follows:
(a0, a1 . . . , an − 1) = (a0e0 + a1e1 + . . . ,+an − 1en − 1)

Therefore, e0, e1, . . . , en−1 span the vector space of all n-tuples over
GF(2). We also see that e0, e1, . . . , en−1 linearly independent.
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Vector Space Vector Space

Let u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) be two n-tuples
in Vn).

We define the inner product (or dot product) of u and v as
u.v = (u0.v0, u1.v1, . . . , un−1.vn−1) where ui .vi and ui .vi + ui+1.vi+1

are carried out in modulo-2 multiplication and addition.

Hence the inner product u.v is a scalar in GF(2). If u.v = 0, u and v
are said to be orthogonal to each other.

The inner product has the following properties :

i u.v = v .u
ii u.(v + w) = u.v + u.w
iii (au).v = a(u.v)
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Vector Space Vector Space

Let S be a k-dimension subspace of Vn and let Sd be the set of
vectors in such that, for any u in S and v in Sd , u.v = 0. The set Sd
contains at least the all-zero n-tuple 0 = (0, 0, . . . , 0), since for any u
in S, 0.u = 0. Thus, Sd is nonempty. For any element a in GF(2) and
any v in Sd ,

a.v =

{
0 if a = 0
1 if a = 1

Therefore, a.v is also in Sd . Let v and w be any two vectors in Sd .
For any vector u in S, u.(v + w) = u.v + u.w = 0 + 0 = 0.

This says that if v and w are orthogonal to u, the vector sum v + w is
also orthogonal to u.

Consequently, v + w is a vector in Sd. It follows from Theorem 2.18
that Sd is also a subspace of . This subspace is called the null (or
dual) space of S. Conversely, S is also the null space of Sd .

Manjunatha. P (JNNCE) Introduction to Algebra September 27, 2013 77 / 85



Matrices Matrices

Matrices
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Matrices Matrices

A matrix k × n over GF(2) is a rectangular array with k rows and n
columns 

g00 g01 g02 . . . g0n − 1
g10 g11 g12 . . . g1n − 1

...
gk−1,0 gk−1,1 gk−1,2 . . . gk−1,n−1


where each entry gi ,j with 0 ≤ i ≤ k and 0 ≤ i ≤ n is an element
from the binary i indicates the row and j indicates the column.

Each row of G is an n-tuple over GF(2) and each column is k-tuple
over GF(2).

The matrix G can also be represented by its k rows as follows

G =


g0

g1
...

gk−1
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Matrices Matrices

If the k(k ≤ n) rows of G are linearly independent then the 2k linear
combinations of these rows form a k-dimensional subspace of the
vector space Vn of all the n-tuples over.

This subpace is called the row space over G. Interchange rows of G or
add one row to another. These are called elementary row operations.

Consider a 3x6 matrix G over GF(2)

 1 1 0 1 1 0
0 0 1 1 1 0
0 1 0 0 1 1


Adding the third tow to the first row and interchanging the second and
third rows  1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 1 1 0
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Matrices Matrices

H =


h0

h1
...

hk−1

 =


h00 h01 h02 . . . h0n − 1
h10 h11 h12 . . . h1n − 1

...
hk−1,0 hk−1,1 hk−1,2 . . . hk−1,n−1
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Matrices Matrices

Consider the following 3x6 matrix over

G =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 1 1 0


The row space of this matrix is the null space

H =

 1 0 1 1 0 0
0 1 1 0 1 0
1 1 0 0 0 1
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Matrices Matrices

Two matrices can be added if they have the same number of rows and the
same number of columns. To add two kxn A = [aij ] and B = [bij ] two
matrices we simply add their corresponding entries aij and bij

[aij ] + [bij ] = [aij + bij ]
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Thank You
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