UNIT - 5: Analog Filter Design

Dr. Manjunatha. P

manjup.jnnce@gmail.com
Professor Dept. of ECE
J.N.N. College of Engineering, Shimoga

November 8, 2017

Analog Filter Design:[1, 2, 3, 4]

- Slides are prepared to use in class room purpose, may be used as a reference material
- All the slides are prepared based on the reference material
- Most of the figures/content used in this material are redrawn, some of the figures/pictures are downloaded from the Internet.
- This material is not for commercial purpose.
- This material is prepared based on Digital Signal Processing for ECE/TCE course as per Visvesvaraya Technological University (VTU) syllabus (Karnataka State, India).

Unit 5: Analog Filter Design:

PART - B-Unit 5: Analog Filter Design:

- Characteristics of commonly used analog filters
- Butterworth and Chebyshev filters
- Analog to analog frequency transformations.

Magnitude Characteristic of filters

Figure 1: Magnitude response of a LPF, HPF,BPF,BSF,

Magnitude Characteristic of lowpass filter

The magnitude response can be expressed as

$$
\text { Magnitude }=\left\{\begin{array}{lc}
1-\delta_{p} \leq|H(j \Omega)| \leq 1 & \text { for } 0 \leq \Omega \leq \Omega_{p} \\
0 \leq \mid H(j \Omega) \leq \delta_{s} & \text { for }|\Omega| \geq \Omega_{s}
\end{array}\right.
$$

Figure 2: Magnitude response of a LPF

- $H(\Omega)$ cannot have an infinitely sharp cutoff from passband to stopband, that is $H(\Omega)$ cannot drop from unity to zero abruptly.
- It is not necessary to insist that the magnitude be constant in the entire passband of the filter. A small amount of ripple in the passband is usually tolerable.
- The filter response may not be zero in the stopband, it may have small nonzero value or ripple.
- The transition of the frequency response from passband to stopband defines transition band.
- The passband is usually called bandwidth of the filter.
- The width of transition band is $\Omega_{s}-\Omega_{p}$ where Ω_{p} defines passband edge frequency and Ω_{s} defines stopband edge frequency.
- The magnitude of passband ripple is varies between the limits $1 \pm \delta_{p}$ where δ_{p} is the ripple in the passband
- The ripple in the stopand of the filter is denoted as δ_{p}
$\Omega_{p}=$ Passband edge frequency in rad/second $\Omega_{s}=$ Stopband edge frequency in rad/second $\omega_{p}=$ Passband edge frequency in rad/sample $\omega_{s}=$ Stopband edge frequency in rad/sample $A_{p}=$ Gain at passband edge frequency $A_{s}=$ Gain at stopband edge frequency

$$
\Omega_{p}=\frac{\omega_{p}}{T} \quad \text { and } \quad \Omega_{s}=\frac{\omega_{s}}{T}
$$

where $T=\frac{1}{f_{s}}=$ Sampling frequency

Butterworth Filter Design

The magnitude frequency response of Butterworth filter is

$$
|H(j \Omega)|^{2}=\frac{1}{\left[1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}\right]}
$$

Figure 3: Frequency response of
Butterworth low pass filter

Properties of butterworth filter

- $\left.\left|H_{N}(j \Omega)\right|^{2}\right|_{\Omega=0}=1$ for all N
- $\left.\left|H_{N}(j \Omega)\right|^{2}\right|_{\Omega=\Omega_{c}}=0.5$ for all finite N
- $\left|H_{N}(j \Omega)\left\|\left._{\Omega=\Omega_{c}}=\frac{1}{\sqrt{2}}=0.70720 \log \right\rvert\, H(j \Omega)\right\|_{\Omega}=\Omega_{c}=-3.01 \mathrm{~dB}\right.$
- $\left|H_{N}(j \Omega)\right|^{2}$ is a monotonically decreasing function of for Ω
- $\left|H_{N}(j \Omega)\right|^{2}$ approaches to ideal response as the value of N increases
- The filter is said to be normalized when cut-off frequency $\Omega_{c}=1 \mathrm{rad} / \mathrm{sec}$.
- From normalized transfer function LPF, HPF, BPF BSF can be obtained by suitable transformation to the normalized LPF specification.

$$
\left|H_{N}(j \Omega)\right|^{2}=H_{N}(j \Omega) H_{N}(-j \Omega)=\frac{1}{\left[1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}\right]}
$$

For normalized Butterworth lowpass filter $\Omega_{c}=1$

$$
H_{N}(j \Omega) H_{N}(-j \Omega)=\frac{1}{\left[1+(\Omega)^{2 N}\right]}
$$

Let $s=j \Omega \therefore \Omega=\frac{s}{j}$

$$
H_{N}(s) H_{N}(-s)=\frac{1}{1+\left(\frac{s}{j}\right)^{2 N}}
$$

The poles of are determined by equating the denominator to zero

$$
\begin{gathered}
1+\left(\frac{s}{j}\right)^{2 N}=0 \\
s=(-1)^{\frac{1}{2 N}} j
\end{gathered}
$$

-1 can be written as $e^{j \pi(2 k+1)}$ where $k=0,1 \ldots$ and $j=e^{j \pi / 2}$

$$
s_{k}=e^{j \pi \frac{(2 k+1)}{2 N}} e^{j \pi / 2} \quad k=0,1 \ldots 2 N-1
$$

The poles are placed on a unit circle with radius unity and are placed at angles

$$
\begin{aligned}
s_{k} & =1 / \frac{k \pi}{N} \quad k=0,1 \ldots 2 N-1 \text { when } N \text { is odd } \\
& =1 / \frac{\pi}{2 N}+\frac{k \pi}{N} \quad k=0,1 \ldots 2 N-1 \text { when } N \text { is even }
\end{aligned}
$$

$\mathrm{N}=1 \therefore \quad \mathrm{k}=0,1$

$$
\begin{gathered}
S_{k}=1 / \frac{k \pi}{N} \\
S_{0}=1 \angle 0, \quad S_{1}=1 \measuredangle \pi
\end{gathered}
$$

The poles lying on left half of s plane is

$$
H_{N}(s)=\frac{1}{\prod_{L H P}\left(s-s_{k}\right)}=\frac{1}{\left(s-\left(s_{1}\right)\right)}=\frac{1}{(s+1)}
$$

Figure 4: Poles of $H_{1}(s) H_{1}(-s)$
$N=2 \therefore \quad k=0,1,2,3 N$ is Even

$$
\begin{gathered}
S_{k}=1 \angle \frac{\pi}{2 N}+\frac{k \pi}{N} \\
S_{0}=1 \angle \frac{\pi}{4}, \quad S_{1}=1 \angle \frac{3 \pi}{4} \\
S_{2}=1 \angle \frac{5 \pi}{4}, \quad S_{3}=1 \angle \frac{7 \pi}{4}
\end{gathered}
$$

The poles lying on left half of s plane is

$$
\begin{aligned}
H_{N}(s) & =\frac{1}{\prod_{L H P}\left[s-s_{k}\right]}=\frac{1}{\left[s-\left(s_{1}\right)\right]\left[s-\left(s_{2}\right)\right]} \quad \text { Figur } \\
& =\frac{1}{[s-(-0.707+j 0.707)][s-(-0.707-j 0.707)]}
\end{aligned}
$$

Figure 5: Poles of $\mathrm{H}_{2}(\mathrm{~s}) \mathrm{H}_{2}(-s)$

$$
\begin{aligned}
H_{2}(s) & =\frac{1}{[s+0.707-j 0.707][s+0.707+j 0.707]} \\
& =\frac{1}{[s+0.707]^{2}-[j 0.707]^{2}} \\
& =\frac{1}{s^{2}+20.707 s+(0.707)^{2}+(0.707)^{2}} \\
& =\frac{1}{s^{2}+1.414 s+1}
\end{aligned}
$$

Determine the poles of lowpass Butterworth filter for $\mathrm{N}=3$. Sketch the location of poles on s plane and hence determine the normalized transfer function of lowpass filter.

Solution:
$N=3 \therefore \quad k=0,1,2,3,4,5$
N is Odd

$$
\begin{array}{ll}
S_{k}=1 \angle \frac{k \pi}{N} \\
S_{0}=1 \angle 0, & S_{1}=1 \angle \frac{\pi}{3}, \quad S_{2}=1 \angle \frac{2 \pi}{3} \\
S_{3}=1 \llbracket \pi, & S_{4}=1 \angle \frac{4 \pi}{3}, \quad S_{5}=1 \angle \frac{5 \pi}{3}
\end{array}
$$

Figure 6: Poles of $H_{3}(s) H_{3}(-s)$

The poles lying on left half of splane is

$$
\begin{aligned}
H_{N}(s) & =\frac{1}{\prod_{L H P}\left[s-s_{k}\right]}=\frac{1}{\left[s-\left(s_{2}\right)\right]\left[s-\left(s_{3}\right)\right]\left[s-\left(s_{4}\right)\right]} \\
H_{3}(s) & =\frac{1}{[s-(-0.5+j 0.866)][s-(-1)][s-(-0.5-j 0.866)]} \\
& =\frac{1}{[s+1][s+0.5-j 0.866][s+0.5+j 0.866)]} \\
& =\frac{1}{\left.[s+1]\left[(s+0.5)^{2}-(j 0.866)^{2}\right]\right]}=\frac{1}{(s+1)\left(s^{2}+s+1\right)}
\end{aligned}
$$

The poles are distributed on unit circle in the s plane
They are distributed half on the left half plane and half on the right half plane.

$$
H_{N}(s)=\frac{1}{\prod_{L H P}\left(s-s_{k}\right)}=\frac{1}{B_{N}(s)}
$$

Table 1: Normalized Butterworth Polynomial

Order N	Butterworth Polynomial
1	$s+1$
2	$s^{2}+\sqrt{2} s+1$
3	$\left(s^{2}+s+1\right)(s+1)$
4	$\left(s^{2}+0.76536 s+1\right)\left(s^{2}+1.84776 s+1\right)$
5	$(s+1)\left(s^{2}+0.6180 s+1\right)\left(s^{2}+1.6180 s+1\right)$

Design of Lowpass Butterworth Filter

The transfer function of normalized Butterworth lowpass filter is given by

$$
H_{N}(s)=\frac{1}{\prod_{L H P}\left(s-s_{k}\right)}=\frac{1}{B_{N}(s)}
$$

where $B_{N}(s)$ is nth order normalized Butterworth polynomial
The lowpass Butterworth filter has to meet the following frequency domain specifications

$$
\begin{array}{cc}
K_{p} \leq 20 \log |H(j \Omega)| \leq 0 & \text { for all } \Omega \leq \Omega_{p} \\
20 \log |H(j \Omega)| \leq K_{s} & \text { for all } \Omega \geq \Omega_{s}
\end{array}
$$

$K_{p}=$ Attenuation at passband frequency Ω_{p} in dB
$K_{s}=$ Attenuation at stopband frequency Ω_{s} in dB

Figure 7: LPF specifications

The magnitude frequency response is

$$
|H(j \Omega)|=\frac{1}{\left[1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}\right]^{\frac{1}{2}}}
$$

Taking $20 \log$ on both sides

$$
\begin{align*}
& 20 \log |H(j \Omega)|=20 \log \left[\frac{1}{\left[1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}\right]^{\frac{1}{2}}}\right] \\
& =-20 \log \left[1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}\right]^{\frac{1}{2}} \tag{2}\\
& =-10 \log \left[1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 N}\right] \\
& \Omega=\Omega_{s} \text { and } K=K_{s} \\
& K_{S}=-10 \log \left[1+\left(\frac{\Omega_{S}}{\Omega_{c}}\right)^{2 N}\right] \\
& {\left[\frac{\Omega_{S}}{\Omega_{c}}\right]^{2 N}=10^{\frac{-K_{S}}{10}}-1} \\
& \Omega=\Omega_{p} \text { and } K=K_{p} \\
& K_{p}=-10 \log \left[1+\left(\frac{\Omega_{P}}{\Omega_{c}}\right)^{2 N}\right] \\
& {\left[\frac{\Omega_{p}}{\Omega_{S}}\right]^{2 N}=\frac{10^{\frac{-K_{p}}{10}}-1}{10^{\frac{-K_{S}}{10}}-1}}
\end{align*}
$$

$$
\begin{equation*}
\left[\frac{\Omega_{P}}{\Omega_{c}}\right]^{2 N}=10^{\frac{-K_{p}}{10}}-1 \tag{1}
\end{equation*}
$$

$$
\begin{gathered}
2 N \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]=\log \left[\frac{10^{\frac{-K_{p}}{10}}-1}{10^{\frac{-K_{S}}{10}}-1}\right] \\
N=\frac{\log \left[\frac{10^{\frac{-K_{p}}{10}}-1}{10^{\frac{-K_{S}}{10}}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]}
\end{gathered}
$$

where N is the order of the filter The cutoff frequency Ω_{C} is

$$
\Omega_{C}=\frac{\Omega_{p}}{\left(10^{\frac{-K_{p}}{10}}-1\right)^{\frac{1}{2 N}}}
$$

OR

$$
\Omega_{C}=\frac{\Omega_{S}}{\left(10^{\frac{-K_{S}}{10}}-1\right)^{\frac{1}{2 N}}}
$$

Design steps for Butterworth Lowpass Filter

From the given specifications
(1) Determine the order of the Filter using

$$
N=\frac{\log \left[\frac{10^{\frac{-K_{p}}{10}}-1}{10^{\frac{-K_{S}}{10}}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]}
$$

(2) Determine the cutoff frequency Ω_{C} using

$$
\Omega_{C}=\frac{\Omega_{p}}{\left(10^{\frac{-K_{p}}{10}}-1\right)^{\frac{1}{2 N}}} \quad O R \Omega_{C}=\frac{\Omega_{s}}{\left(10^{\frac{-K_{s}}{10}}-1\right)^{\frac{1}{2 N}}}
$$

(3) Determine the transfer function of normalized Butterworth filter by

$$
H_{N}(s)=\frac{1}{\prod_{L H P}\left(s-s_{k}\right)}=\frac{1}{B_{N}(s)}
$$

(4) From analog lowpass to lowpass frequency transformation, find the desired transfer function by substituting the following

$$
H_{a}(s)=\left.H_{N}(s)\right|_{s \rightarrow \frac{s}{\Omega_{C}}}
$$

Design an analog Butterworth low pass filter to meet the following specifications $\mathrm{T}=1$ second

$$
\begin{aligned}
0.707 & =\leq\left|H\left(e^{j \omega}\right)\right| \leq 1 ; \quad \text { for } 0 \leq \omega \leq 0.3 \pi \\
& =\left|H\left(e^{j \omega}\right)\right| \leq 0.2 ; \quad \text { for } .75 \pi \leq \omega \leq \pi
\end{aligned}
$$

Solution:
Passband edge frequency $\omega_{p}=0.3 \pi \mathrm{rad} /$ sample
Stopband edge frequency $\omega_{s}=0.75 \pi \mathrm{rad} /$ sample
Passband edge analog frequency $\Omega_{p}=\frac{\omega_{p}}{1}=\frac{0.3 \pi}{1}=0.3 \pi \mathrm{rad} / \mathrm{second}$
Stopband edge analog frequency $\Omega_{s}=\frac{\omega_{s}}{1}=\frac{0.75 \pi}{1}=0.75 \pi \mathrm{rad} / \mathrm{second}$
$K_{p}=20 \log (0.707)=-3.01 \mathrm{~dB}, K_{s}=20 \log (0.2)=-13.97 \mathrm{~dB}$,
The order of the filter is

$$
\begin{aligned}
N & =\frac{\log \left[\frac{10 \frac{-K_{p}}{10}-1}{10 \frac{-K_{S}}{10}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]} \\
& =\frac{\log \left[\frac{10 \frac{301}{10}-1}{10 \frac{13.97}{10}-1}\right]}{2 \log \left[\frac{0.3 \pi}{0.75 \pi}\right]}=\frac{\log \left[\frac{1}{24}\right]}{2 \times(-0.398)} \\
& =\frac{-1.38}{-0.796}=1.7336 \simeq 2
\end{aligned}
$$

Figure 8: LPF specifications

OR

For even N

$$
H\left(s_{n}\right)=\prod_{k=1}^{\frac{N}{2}} \frac{1}{s^{2}+b_{k} s+1}
$$

where $b_{k}=2 \sin \left[\frac{(2 k-1) \pi}{2 N}\right]$
$\mathrm{N}=2$

$$
\begin{aligned}
& \begin{array}{l}
k=\frac{N}{2}=\frac{2}{2}=1 \\
\mathrm{k}=1 \\
b_{k}=2 \sin \left[\frac{(2-1) \pi}{2 \times 2}\right]=1.4142 \\
\quad H\left(s_{n}\right)=\frac{1}{s^{2}+1.4142 s+1}
\end{array} .=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{c} & =\frac{\Omega_{s}}{\left(10^{\frac{-k_{s}}{10}}-1\right)^{\frac{1}{2 N}}} \\
& =\frac{2.3562}{\left(10^{\frac{13.97}{10}}-1\right)^{\frac{1}{4}}} \\
& =1.0664 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Unnomalized transfer function, H(s)

$$
\begin{aligned}
H_{a}(s) & =\left.H_{2}(s)\right|_{s \rightarrow \frac{s}{\Omega_{c}}} \\
& =\left.H_{2}(s)\right|_{s \rightarrow \frac{s}{1.0644}} \\
& =\frac{1}{\frac{s^{2}}{\Omega_{c}{ }^{2}}+1.4142 \frac{s}{\Omega_{c}}+1} \\
& =\frac{1}{\frac{s^{2}+1.4142 \Omega_{c} s+\Omega_{c}^{2}}{\Omega_{c}^{2}}} \\
& =\frac{\Omega_{c}^{2}}{s^{2}+1.4142 \Omega_{c} s+\Omega_{c}^{2}} \\
& =\frac{1.0644^{2}}{s^{2}+1.4142 \times 1.0644 s+1.0644^{2}} \\
& =\frac{1.133}{s^{2}+1.5047 s+1.133}
\end{aligned}
$$

Design an analog Butterworth low pass filter to meet the following specifications $\mathrm{T}=1$ second

$$
\begin{aligned}
0.9 & =\leq\left|H\left(e^{j \omega}\right)\right| \leq 1 ; \quad \text { for } 0 \leq \omega \leq 0.35 \pi \\
& =\left|H\left(e^{j \omega}\right)\right| \leq 0.275 ; \quad \text { for } .7 \pi \leq \omega \leq \pi
\end{aligned}
$$

Solution:
Passband edge frequency $\omega_{p}=0.35 \pi \mathrm{rad} /$ sample
Stopband edge frequency $\omega_{s}=0.7 \pi \mathrm{rad} /$ sample
Passband edge analog frequency $\Omega_{p}=\frac{\omega_{p}}{1}=\frac{0.35 \pi}{1}=0.35 \pi \mathrm{rad} / \mathrm{second}$
Stopband edge analog frequency $\Omega_{s}=\frac{\omega_{s}}{1}=\frac{0.7 \pi}{1}=0.7 \pi \mathrm{rad} /$ second
$K_{p}=20 \log (0.9)=-0.9151 \mathrm{~dB}, K_{s}=20 \log (0.2)=-11.2133 \mathrm{~dB}$,
The order of the filter is

$$
\begin{aligned}
N & =\frac{\log \left[\frac{10 \frac{-K_{p}}{10}-1}{10 \frac{-K_{S}}{10}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{s}}\right]} \\
& =\frac{\log \left[\frac{10 \frac{0.9151}{10}-1}{10 \frac{11.213}{10}-1}\right]}{2 \log \left[\frac{0.35 \pi}{0.7 \pi}\right]}=\frac{\log \left[\frac{0.234}{12.21}\right]}{2 \times(-0.301)} \\
& =\frac{-1.717}{-0.602}=2.852 \simeq 3
\end{aligned}
$$

Figure 10: LPF specifications

For odd $\mathrm{N}=3$

$$
H\left(s_{n}\right)=\frac{1}{(s+1)} \prod_{k=1}^{\frac{N-1}{2}} \frac{1}{s^{2}+b_{k} s+1}
$$

$$
\text { where } b_{k}=2 \sin \left[\frac{(2 k-1) \pi}{2 N}\right]
$$

$$
N=3
$$

$$
k=\frac{N-1}{2}=\frac{3-1}{2}=1
$$

$$
\mathrm{k}=1
$$

$$
\begin{aligned}
& k=1 \\
& b_{k}=b_{1}=2 \sin \left[\frac{(2-1) \pi}{2 \times 3}\right]=1
\end{aligned}
$$

$$
H\left(s_{n}\right)=\frac{1}{(s+1)\left(s^{2}+s+1\right)}
$$

$$
=\frac{1}{s^{3}+2 s^{2}+2 s+1}
$$

$$
\Omega_{c}=\frac{\Omega_{s}}{\left(10^{\frac{-k_{s}}{10}}-1\right)^{\frac{1}{2 N}}}
$$

$$
=\frac{2.2}{\left(10^{\frac{11.21}{10}}-1\right)^{\frac{1}{6}}}=\frac{2.2}{1.515}
$$

$=1.45 \mathrm{rad} / \mathrm{sec}$

OR

$N=3 \therefore \quad k=0,1,2,3,4,5 \mathrm{~N}$ is Even

$$
S_{k}=1 \angle \frac{\pi}{2 N}+\frac{k \pi}{N}
$$

$$
\begin{array}{ll}
S_{0}=1 \angle \frac{\pi}{4}, & S_{1}=1 \angle \frac{3 \pi}{4} \\
S_{2}=1 \angle \frac{5 \pi}{4}, & S_{3}=1 \angle \frac{7 \pi}{4}
\end{array}
$$

The poles lying on left half of s plane

$$
\begin{aligned}
H_{N}(s) & =\frac{1}{\prod_{L H P}\left[s-s_{k}\right]}=\frac{1}{\left[s-\left(s_{1}\right)\right]\left[s-\left(s_{2}\right)\right]} \\
& =\frac{1}{[s-(-0.707+j 0.707)][s-(-0.707-j 0.707)]}
\end{aligned}
$$

Figure 11: Poles of $\mathrm{H}_{2}(\mathrm{~s}) \mathrm{H}_{2}(-\mathrm{s})$

Unnomalized transfer function, $\mathrm{H}(\mathrm{s})$ and $\Omega_{c}=1.45 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{3}(s)\right|_{s \rightarrow \frac{s}{\Omega_{c}}}=\left.\frac{1}{s^{3}+2 s^{2}+2 s+1}\right|_{s \rightarrow \frac{s}{\Omega_{c}}} \\
& =\left.H_{3}(s)\right|_{s \rightarrow \frac{s}{\Omega_{c}}} \\
& =\frac{1}{\frac{s^{3}}{\Omega_{c}^{3}}+2 \frac{s^{2}}{\Omega_{c}{ }^{2}}+2 \frac{s}{\Omega_{c}}+1} \\
& =\frac{1}{\frac{s^{3}+2 \Omega_{c} s^{2}+2 \Omega_{c}^{2} s+\Omega_{c}^{3}}{\Omega_{c}^{3}}} \\
& =\frac{\Omega_{c}^{3}}{s^{3}+2 \Omega_{c} s^{2}+2 \Omega_{c}^{2} s+\Omega_{c}^{3}} \\
& =\frac{1.45^{3}}{s^{3}+2 \times 1.45 s^{2}+2 \times 1.45^{2} s+1.45^{3}} \\
& =\frac{3.048}{s^{3}+2.9 s^{2}+4.205 s+3.048}
\end{aligned}
$$

Design an analog Butterworth low pass filter to meet the following specifications $\mathrm{T}=1$ second

$$
\begin{aligned}
0.8 & =\leq\left|H\left(e^{j \omega}\right)\right| \leq 1 ; \quad \text { for } 0 \leq \omega \leq 0.2 \pi \\
& =\left|H\left(e^{j \omega}\right)\right| \leq 0.2 ; \quad \text { for } .32 \pi \leq \omega \leq \pi
\end{aligned}
$$

Solution:
Passband edge frequency $\omega_{p}=0.2 \pi \mathrm{rad} /$ sample
Stopband edge frequency $\omega_{s}=0.32 \pi \mathrm{rad} /$ sample
Passband edge analog frequency $\Omega_{p}=\frac{\omega_{p}}{1}=\frac{0.35 \pi}{1}=0.6283 \mathrm{rad} /$ second
Stopband edge analog frequency $\Omega_{s}=\frac{\omega_{s}}{1}=\frac{0.7 \pi}{1}=1.0053 \mathrm{rad} / \mathrm{second}$
$K_{p}=20 \log (0.8)=-1.9 \mathrm{~dB}, K_{s}=20 \log (0.2)=-13.97 \mathrm{~dB}$,
The order of the filter is

$$
\begin{aligned}
N & =\frac{\log \left[\frac{10 \frac{-K_{p}}{10}-1}{10^{\frac{-K_{S}}{10}}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]} \\
& =\frac{\log \left[\frac{10^{\frac{1.9}{10}}-1}{10^{\frac{13.97}{10}}-1}\right]}{2 \log \left[\frac{0.6283}{1.0053}\right]}=\frac{\log \left[\frac{0.548}{24}\right]}{2 \times(-0.204)} \\
& =\frac{-1.641}{-0.408}=4.023 \simeq 4
\end{aligned}
$$

Figure 12: LPF specifications

For Even $\mathrm{N}=4$

$$
H\left(s_{n}\right)=\prod_{k=1}^{\frac{N}{2}} \frac{1}{s^{2}+b_{k} s+1}
$$

where $b_{k}=2 \sin \left[\frac{(2 k-1) \pi}{2 N}\right]$
$\mathrm{N}=4$
$k=\frac{N}{2}=\frac{4}{2}=2$
$\mathrm{k}=1$
$b_{k}=b_{1}=2 \sin \left[\frac{(2-1) \pi}{2 \times 4}\right]=0.7654$
$\mathrm{k}=2$
$b_{k}=b_{2}=2 \sin \left[\frac{(4-1) \pi}{2 \times 4}\right]=1.8478$

$$
\begin{aligned}
H\left(s_{n}\right) & =\frac{1}{\left(s^{2}+0.764 s+1\right)\left(s^{2}+1.8478 s+1\right)} \\
& =\frac{1}{s^{4}+2.6118 s^{3}+3.4117 s^{2}+2.6118 s+1}
\end{aligned}
$$

$$
\Omega_{c}=\frac{\Omega_{s}}{\left(10^{\frac{-k_{s}}{10}}-1\right)^{\frac{1}{2 N}}}
$$

$$
=\frac{1.0053}{\left(10^{\frac{13.97}{10}}-1\right)^{\frac{1}{8}}}=\frac{1.0053}{1.4873}
$$

$$
=0.676 \mathrm{rad} / \mathrm{sec}
$$

Unnomalized transfer function, $\mathrm{H}(\mathrm{s})$ and $\Omega_{c}=0.676 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{4}(s)\right|_{s \rightarrow \frac{s}{\Omega_{c}}}=\left.\frac{1}{s^{4}+2.6118 s^{3}+3.4117 s^{2}+2.6118 s+1}\right|_{s \rightarrow \frac{s}{\Omega_{c}}} \\
& =\left.H_{4}(s)\right|_{s \rightarrow \frac{s}{\Omega_{c}}} \\
& =\frac{1}{\frac{s^{4}}{\Omega_{c}{ }^{4}}+2.6118 \frac{s^{3}}{\Omega_{c}{ }^{3}}+3.4117 \frac{s^{2}}{\Omega_{c}{ }^{2}}+2.6118 \frac{s}{\Omega_{c}}+1} \\
& =\frac{1}{\frac{s^{4}+2.6118 \Omega_{c} s^{3}+3.4117 \Omega_{c}^{2} s^{2}+2.6118 \Omega_{c}^{3} s+\Omega_{c}^{4}}{\Omega_{c}^{4}}} \\
& =\frac{\Omega_{c}^{4}}{s^{4}+2.6118 \Omega_{c} s^{3}+3.4117 \Omega_{c}^{2} s^{2}+2.6118 \Omega_{c}^{3} s+\Omega_{c}^{4}} \\
& =\frac{0.676^{4}}{s^{4}+1.7655 s^{3}+1.559 s^{2}+0.8068 s+0.2088} \\
& =\frac{0.2088}{s^{4}+1.7655 s^{3}+1.559 s^{2}+0.8068 s+0.2088}
\end{aligned}
$$

Design an analog Butterworth low pass filter which has -2 dB attenuation at frequency 20 $\mathrm{rad} / \mathrm{sec}$ and at least -10 dB attenuation at $30 \mathrm{rad} / \mathrm{sec}$.
Solution:
Passband edge analog frequency $\Omega_{p}=20 \mathrm{rad} /$ second Stopband edge analog frequency $\Omega_{s}=30 \mathrm{rad} /$ second $K_{p}=-2 \mathrm{~dB}, K_{s}=-10 \mathrm{~dB}$,
The order of the filter is

$$
\begin{aligned}
N & =\frac{\log \left[\frac{10 \frac{-K_{p}}{10}-1}{10 \frac{-K_{S}}{10}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]} \\
& =\frac{\log \left[\frac{10 \frac{2}{10}-1}{10 \frac{10}{10}-1}\right]}{2 \log \left[\frac{20}{30}\right]}=\frac{\log \left[\frac{0.584}{9}\right]}{2 \times(-0.176)} \\
& =\frac{-1.1878}{-0.352}=3.374 \simeq 4
\end{aligned}
$$

Figure 13: LPF specifications

For Even $\mathrm{N}=4$

$$
H\left(s_{n}\right)=\prod_{k=1}^{N / 2} \frac{1}{s_{n}^{2}+b_{k} s_{n}+1}
$$

where $b_{k}=2 \sin \left[\frac{(2 k-1) \pi}{2 N}\right]$
$\mathrm{N}=4$
$k=\frac{N}{2}=\frac{4}{2}=2$
$\mathrm{k}=1$
$b_{k}=b_{1}=2 \sin \left[\frac{(2-1) \pi}{2 \times 4}\right]=0.7654$
$\mathrm{k}=2$
$b_{k}=b_{2}=2 \sin \left[\frac{(4-1) \pi}{2 \times 4}\right]=1.8478$

$$
\begin{aligned}
H\left(s_{n}\right) & =\frac{1}{\left(s^{2}+0.764 s+1\right)\left(s^{2}+1.8478 s+1\right)} \\
& =\frac{1}{s^{4}+2.6118 s^{3}+3.4117 s^{2}+2.6118 s+1}
\end{aligned}
$$

$$
\Omega_{c}=\frac{\Omega_{s}}{\left(10^{\frac{-k_{s}}{10}}-1\right)^{\frac{1}{2 N}}}
$$

$$
=\frac{30}{\left(10^{\frac{10}{10}}-1\right)^{\frac{1}{8}}}=\frac{30}{1.316}
$$

$$
=22.795 \mathrm{rad} / \mathrm{sec}
$$

Unnomalized transfer function, $\mathrm{H}(\mathrm{s})$ and $\Omega_{c}=22.795 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{4}(s)\right|_{s \rightarrow \frac{s}{\Omega_{c}}}=\left.\frac{1}{s^{4}+2.6118 s^{3}+3.4117 s^{2}+2.6118 s+1}\right|_{s \rightarrow \frac{s}{22.795}} \\
& =\frac{1}{\frac{s^{4}}{\Omega_{c}{ }^{4}}+2.6118 \frac{s^{3}}{\Omega_{c}{ }^{3}}+3.4117 \frac{s^{2}}{\Omega_{c}{ }^{2}}+2.6118 \frac{s}{\Omega_{c}}+1} \\
& =\frac{1}{\frac{s^{4}+2.6118 \Omega_{c} s^{3}+3.4117 \Omega_{c}^{2} s^{2}+2.6118 \Omega_{c}^{3} s+\Omega_{c}^{4}}{\Omega_{c}^{4}}} \\
& =\frac{\Omega_{c}^{4}}{s^{4}+2.6118 \Omega_{c} s^{3}+3.4117 \Omega_{c}^{2} s^{2}+2.6118 \Omega_{c}^{3} s+\Omega_{c}^{4}} \\
& =\frac{22.795^{4}}{s^{4}+59.535 s^{3}+1772.76 s^{2}+30935.611 s+22.795^{4}} \\
& =\frac{22.795^{4}}{s^{4}+59.535 s^{3}+1772.76 s^{2}+30935.611 s+22.795^{4}}
\end{aligned}
$$

A Butterworth low pass filter has to meet the following specifications
i) passband gain $K_{P}=1 \mathrm{~dB}$ at $\Omega_{P}=4 \mathrm{rad} / \mathrm{sec}$
ii) Stop band attenuation greater than or equal to 20 dB at $\Omega_{s}=8 \mathrm{rad} / \mathrm{sec}$

Determine the transfer function $H_{a}(s)$ of the lowest order Butterworth filter to meet the above the specifications

Solution:

$\Omega_{p}=4 \mathrm{rad} / \mathrm{sec}, \Omega_{s}=8 \mathrm{rad} / \mathrm{sec}$,
$K_{p}=-1 \mathrm{~dB}, K_{s}=-20 \mathrm{~dB}$,
The order of the filter is

$$
\begin{aligned}
N & =\frac{\log \left[\frac{10 \frac{-K_{p}}{10}-1}{10 \frac{-K_{S}}{10}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]} \\
& =\frac{\log \left[\frac{10 \frac{1}{10}-1}{1 \frac{20}{10}-1}\right]}{2 \log \left[\frac{4}{8}\right]}=4.289 \simeq 5
\end{aligned}
$$

Figure 14: LPF specifications

$$
S_{k}=1 \angle \theta_{k} \quad k=0,1 \ldots 2 N-1
$$

For odd $\mathrm{N} \theta_{k}$ is

$$
\theta_{k}=\frac{\pi k}{N}
$$

$$
\begin{aligned}
& S_{0}=1 \angle 0=1 \angle 0= \\
& S_{1}=1 \angle \frac{\pi}{5}=1 \angle 36^{\circ}=0.809+j 0.588 \\
& S_{2}=1 / \frac{2 \pi}{5}=1 \angle 72^{\circ}=0.309+j 0.951 \\
& S_{3}=1 \angle \frac{3 \pi}{5}=1 \angle 108^{\circ}=-0.309+j 0.951 \\
& S_{4}=1 / \frac{4 \pi}{5}=1 \angle 144^{\circ}=-0.809-j 0.588 \\
& S_{5}=1 \angle \pi=1 \angle 180^{\circ}=-1 \\
& S_{6}=1 / \frac{6 \pi}{5}=1 \angle 216^{\circ}=-0.809-j 0.588 \\
& S_{7}=1 / \frac{7 \pi}{5}=1 \angle 252^{\circ}=-0.309-j 0.951 \\
& S_{8}=1 \angle \frac{8 \pi}{5}=1 \angle 288^{\circ}=0.309-j 0.951 \\
& S_{9}=1 \angle \frac{9 \pi}{5}=1 \angle 324^{\circ}=-0.809-j 0.588
\end{aligned}
$$

$$
\begin{aligned}
H_{5}(s) & =\frac{1}{\prod_{\text {LHPonly }}\left(s-s_{k}\right)} \\
& =\frac{1}{\left(s-s_{3}\right)\left(s-s_{4}\right)\left(s-s_{5}\right)\left(s-s_{6}\right)\left(s-s_{7}\right)} \\
& =\frac{1}{(s-0.309+j 0.951)(s+0.809+j 0.588)(s+1)} \\
& =\frac{(s+0.809-j 0.588)(s+0.309+j 0.951)}{\left[(s-0.309)^{2}+(0.951)^{2}\right]\left[(s+0.809)^{2}+(0.588)^{2}\right](s+1)} \\
& =\frac{1}{\left[\left(s^{2}+0.618 s+1\right)\left(s^{2}+1.618 s+1\right)(s+1)\right.} \\
& =\frac{1}{s^{5}+3.236 s^{4}+5.236 s^{3}+5.236 s^{2}+3.236 s+1} \\
& \Omega_{c}=\frac{\Omega_{p}}{\left(10^{\frac{-k_{p}}{10}}-1\right)^{\frac{1}{2 N}}}=4.5784 \mathrm{rad} / \mathrm{sec} \\
& H_{a}(s)=\left.H_{5}(s)\right|_{s \rightarrow \frac{s}{4}} ^{4.5787}
\end{aligned}
$$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{5}(s)\right|_{s \rightarrow \frac{s}{\Omega_{c}}} \\
& =\left.H_{5}(s)\right|_{s \rightarrow \frac{s}{4.5787}} \\
& =\frac{1}{\left(\frac{s}{4.5787}\right)^{5}+3.236\left(\frac{s}{4.5788}\right)^{4}+5.236\left(\frac{s}{4.578)^{3}}\right)^{3}+} \\
& =\frac{2012.4}{4.236\left(\frac{s}{4.5787}\right)^{2}+3.236\left(\frac{s}{4.5787}\right)+1} \\
& =\frac{2012.4}{s^{5}+14.82 s^{4}+109.8 s^{3}+502.6 s^{2}+1422.36 s+2012.4}
\end{aligned}
$$

Verification

$$
\begin{aligned}
H_{a}(j \Omega) & =\frac{2012.4}{(j \Omega)^{5}+14.82(j \Omega)^{4}+109.8(j \Omega)^{3}+502.6(j \Omega)^{2}+1422.3(j \Omega)+2012.4} \\
& =\frac{2012.4}{\left(14.82 \Omega^{4}-502.6 \Omega^{2}+2012.4\right)+j\left(\Omega^{5}-109.8 \Omega^{3}+1422.3 \Omega\right)} \\
\left|H_{a}(j \Omega)\right| & =\frac{2012.4}{\sqrt{\left(14.82 \Omega^{4}-502.6 \Omega^{2}+2012.4\right)^{2}+j\left(\Omega^{5}-109.8 \Omega^{3}+1422.3 \Omega\right)^{2}}} \\
20 \log \left|H_{a}(j \Omega)\right|_{4} & =-1 d B \\
20 \log \left|H_{a}(j \Omega)\right|_{8} & =-24 d B
\end{aligned}
$$

Chebyshev Filter Design

The magnitude frequency response of Chebyshev filter is

$$
|H(j \Omega)|^{2}=\frac{1}{\left[1+\epsilon^{2} T_{n}^{2}\left(\frac{\Omega}{\Omega_{p}}\right)\right]}
$$

Properties of Chebyshev filter

- If $\Omega)_{p}=1 \mathrm{rad} / \mathrm{sec}$ then it is called as type-I normalized Chebyshev lowpass filter.
- $\left.\left.H_{N}(j \Omega)\right|^{2}\right|_{\Omega=0}=1$ for all N
- $|H(j 0)|=1$ for odd N and $|H(j 0)|=\frac{1}{\sqrt{1+\epsilon^{2}}}$ for even N
- The filter has uniform ripples in the passband and is monotonic outside the passband.
- The sum of the number of maxima and minima in the passband equals the order of the filter.

(a) N Odd

(b) N Even

Figure 15: Magnitude frequency response of LPF for Chebyshev

Order of the Filter

K_{p} Gain or Magnitude at passband in normal value(without dB) for frequency Ω_{p} K_{s} Gain or Magnitude at passband in normal value(without dB) for frequency Ω_{s}

$$
N_{1}=\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / K_{s}^{2}\right)-1}{\left(1 / K_{p}^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)}
$$

K_{p} Gain or Magnitude at passband in dB for frequency Ω_{p} K_{s} Gain or Magnitude at passband in dB for frequency Ω_{s}

$$
N_{1}=\frac{\cosh ^{-1}\left[\left[\frac{10^{0.1 K_{s}}-1}{10^{0.1 K_{p}}-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)}
$$

Chose the order of the filter $N>N_{1}$

Normalized Chebyshev lowpass filter transfer function

When \mathbf{N} is Even

$$
H\left(s_{n}\right)=\prod_{k=1}^{\frac{N}{2}} \frac{B_{k}}{s^{2}+b_{k} s+c_{k}}
$$

When N is odd

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \prod_{k=1}^{\frac{N-1}{2}} \frac{B_{k}}{s^{2}+b_{k} s+c_{k}}
$$

- where $b_{k}=2 y_{N} \sin \left[\frac{(2 k-1) \pi}{2 N}\right], c_{k}=y_{N}^{2}+\cos ^{2}\left[\frac{(2 k-1) \pi}{2 N}\right]$
- $c_{0}=y_{N}$

$$
y_{N}=\frac{1}{2}\left[\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{\frac{1}{N}}-\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{-\frac{1}{N}}\right]
$$

where $\epsilon=\left[\left(1 / K_{p}^{2}\right)-1\right]^{\frac{1}{2}}$
When \mathbf{N} is Even the values of parameter B_{k} are evaluated using

$$
\left.H\left(s_{n}\right)\right|_{s=0}=\frac{1}{\left(1+\epsilon^{2}\right)^{\frac{1}{2}}}
$$

When \mathbf{N} is odd the values of parameter B_{k} are evaluated using

$$
\left.H\left(s_{n}\right)\right|_{s=0}=1
$$

Design steps for Chebyshev filter:

From the given specifications
(1) Determine the order of the Filter
(2) Determine the Normalized Chebyshev lowpass filter transfer function
(3) From analog lowpass to lowpass frequency transformation, find the desired transfer function by substituting the following

$$
H_{a}(s)=\left.H_{N}(s)\right|_{s \rightarrow \frac{s}{\Omega_{C}}}
$$

where $\Omega_{C}=\Omega_{P}$

Jan 2013, June 2015: Design a Chebyshev IIR analog low pass filter that has -3.0 dB frequency $100 \mathrm{rad} / \mathrm{sec}$ and stopband attenuation 25 dB or grater for all radian frequencies past 250 $\mathrm{rad} / \mathrm{sec}$

Solution:
Passband ripple $K_{p}=-3.0 \mathrm{~dB}$ or in normal value is $K_{p}=10^{K_{p} / 20}=10^{-3 / 20}=0.707$ Stopband ripple $K_{s}=25.0 \mathrm{~dB}$ or in normal value is $K_{s}=10^{K_{s} / 20}=10^{-25 / 20}=0.056$ Passband edge frequency $=100 \mathrm{rad} / \mathrm{sec}$ Stopband edge frequency $=250 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
N_{1} & =\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / K_{s}^{2}\right)-1}{\left(1 / K_{p}^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)} \\
& =\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / 0.056^{2}\right)-1}{\left(1 / 0.707^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{250}{100}\right)} \\
& =\frac{\cosh ^{-1}\left[\frac{317}{1}\right]^{\frac{1}{2}}}{\cosh ^{-1}(2.5)}=\frac{\cosh ^{-1}[17.8]}{\cosh ^{-1}[2.5]} \\
& =\frac{3.57}{1.566}=2.278 \simeq 3
\end{aligned}
$$

Figure 16: LPF specifications
$\mathrm{N}=3$

When N is odd

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \times \frac{B_{k}}{s^{2}+b_{1} s+c_{1}}
$$

$$
\begin{aligned}
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \prod_{k=1}^{\frac{N-1}{2}} \frac{B_{k}}{s^{2}+b_{k} s+c_{k}} & \epsilon \\
\mathrm{~N}=3 k=\frac{N-1}{2}=\frac{3-1}{2}=1 & =\left[\left(1 / K_{p}^{2}\right)-1\right]^{\frac{1}{2}} \\
& =\left[\left(1 / 0.707^{2}\right)-1\right]^{\frac{1}{2}}=1
\end{aligned}
$$

$$
\begin{aligned}
y_{N} & =\frac{1}{2}\left[\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{\frac{1}{N}}-\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{-\frac{1}{N}}\right] \\
& =\frac{1}{2}\left[\left[\left(\frac{1}{1^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{1}\right]^{\frac{1}{3}}-\left[\left(\frac{1}{1^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{1}\right]^{-\frac{1}{3}}\right] \\
& =\frac{1}{2}\left[\left[(2)^{\frac{1}{2}}+1\right]^{\frac{1}{3}}-\left[(2)^{\frac{1}{2}}+1\right]^{-\frac{1}{3}}\right] \\
& =\frac{1}{2}\left[[1.414+1]^{\frac{1}{3}}-[1.414+1]^{-\frac{1}{3}}\right]=\frac{1}{2}[1.341-0.745] \simeq 0.298
\end{aligned}
$$

$C_{0}=y_{N}=0.298 \quad \mathrm{k}=1 \quad b_{k}=2 \times y_{N} \sin \left[\frac{(2 k-1) \pi}{2 \times N}\right]$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{k}=1 \\
b_{1}=2 \times 0.298 \sin \left[\frac{(2-1) \pi}{2 \times 3}\right]=0.298 \\
\mathrm{k}=2
\end{array} \\
& \begin{array}{r}
c_{k}=y_{N}^{2}+\cos ^{2}\left[\frac{(2 k-1) \pi}{2 N}\right] \\
\\
\qquad \begin{array}{r}
c_{1}=1 \\
\\
=0.298^{2}+\cos ^{2}\left[\frac{(2-1) \pi}{2 \times 3}\right] \\
\\
=0.088+\cos ^{2}\left[\frac{\pi}{6}\right] \\
\end{array} \\
=0.088+0.75=0.838
\end{array}
\end{aligned}
$$

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \times \frac{B_{1}}{s^{2}+b_{1} s+c_{1}}
$$

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+0.298} \times \frac{B_{1}}{s^{2}+0.298 s+0.838}
$$

When N is odd the values of parameter B_{k} are evaluated using

$$
\begin{gathered}
\left.H\left(s_{n}\right)\right|_{s=0}=1 \\
H\left(s_{n}\right)=\frac{B_{0} B_{1}}{0.298 \times 0.838}=1 \\
B_{0} B_{1}=0.25
\end{gathered}
$$

$$
B_{0}=B_{1}
$$

$$
\begin{gathered}
B_{0}^{2}=0.25 \\
B_{0}=\sqrt{0.25}=0.5
\end{gathered}
$$

$$
\begin{aligned}
H\left(s_{n}\right) & =\frac{B_{0}}{s+0.298} \times \frac{B_{1}}{s^{2}+0.298 s+0.838} \\
H\left(s_{n}\right) & =\frac{0.25}{s^{3}+0.596 s^{2}+0.926 s+0.25}
\end{aligned}
$$

Unnomalized transfer function, $\mathrm{H}(\mathrm{s})$ and $\Omega_{p}=100 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{3}(s)\right|_{s \rightarrow \frac{s}{\Omega_{p}}}=\left.\frac{0.25}{s^{3}+0.596 s^{2}+0.926 s+0.25}\right|_{s \rightarrow \frac{s}{\Omega_{p}}} \\
& =\left.H_{3}(s)\right|_{s \rightarrow \frac{s}{\Omega_{p}}} \\
& =\frac{0.25}{\frac{s^{3}}{\Omega_{p}^{3}}+0.596 \frac{s^{2}}{\Omega_{p}^{2}}+0.926 \frac{s}{\Omega_{p}}+0.25} \\
& =\frac{0.25}{\frac{s^{3}+0.596 \Omega_{p} s^{2}+0.926 \Omega_{c}^{2} s+0.25 \Omega_{p}^{3}}{\Omega_{p}^{3}}} \\
& =\frac{0.25 \times \Omega_{p}^{3}}{s^{3}+0.596 \Omega_{p} s^{2}+0.926 \Omega_{c}^{2} s+0.25 \Omega_{p}^{3}} \\
& =\frac{0.25 \times 100^{3}}{s^{3}+0.596 \times 100 s^{2}+0.926 \times 100^{2} s+0.25 \times 100^{3}} \\
& =\frac{0.25 \times 100^{3}}{s^{3}+59.6 s^{2}+926 s+0.25 \times 100^{3}}
\end{aligned}
$$

Design a Chebyshev IIR low pass filter that has to meet the following specifications
i) passband ripple $\leq 0.9151 \mathrm{~dB}$ and passband edge frequency $0.25 \pi \mathrm{rad} / \mathrm{sec}$
ii) Stopband attenuation $\geq 12.395 \mathrm{~dB}$ and Stopband edge frequency $0.5 \pi \mathrm{rad} / \mathrm{sec}$

Solution:
Passband ripple $K_{p}=0.9151 \mathrm{~dB}$
or in normal value is $K_{p}=10^{K_{p} / 20}=10^{-9151 / 20}=0.9$
Stopband ripple $K_{s}=12.395 \mathrm{~dB}$
or in normal value is $K_{s}=10^{K_{s} / 20}=10^{-12.395 / 20}=0.24$
Passband edge frequency $0.25 \pi=0.7854 \mathrm{rad} / \mathrm{sec}$
Stopband edge frequency $0.5 \pi=1.5708 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
N_{1} & =\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / K_{s}^{2}\right)-1}{\left(1 / K_{p}^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)} \\
& =\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / 0.24^{2}\right)-1}{\left(1 / 0.9^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{1.5708}{0.7854}\right)} \\
& =\frac{\cosh ^{-1}\left[\frac{16.3611}{0.2346}\right]^{\frac{1}{2}}}{\cosh ^{-1}\left(\frac{1.5708}{0.7854}\right)}=\frac{\cosh ^{-1}[8.35]}{\cosh ^{-1}[2]}=\frac{2.8118}{1.3169}=2.135 \simeq 3
\end{aligned}
$$

$\mathrm{N}=3$

When N is odd

$$
\begin{array}{lrl}
& H\left(s_{n}\right) & =\frac{B_{0}}{s+c_{0}} \times \frac{B_{k}}{s^{2}+b_{k} s+c_{k}} \\
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \prod_{k=1}^{\frac{N-1}{2}} \frac{B_{k}}{s^{2}+b_{k} s+c_{k}} & & \\
& \epsilon=\left[\left(1 / K_{p}^{2}\right)-1\right]^{\frac{1}{2}} \\
\mathrm{~N}=3 k=\frac{N-1}{2}=\frac{3-1}{2}=1 & & =\left[\left(1 / 0.9^{2}\right)-1\right]^{\frac{1}{2}}=0.4843
\end{array}
$$

$$
\begin{aligned}
y_{N} & =\frac{1}{2}\left[\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{\frac{1}{N}}-\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{-\frac{1}{N}}\right] \\
& =\frac{1}{2}\left[\left[\left(\frac{1}{0.4843^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{0.4843}\right]^{\frac{1}{3}}-\left[\left(\frac{1}{0.4843^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{0.4843}\right]^{-\frac{1}{3}}\right] \\
& =\frac{1}{2}\left[\left[(5.2635)^{\frac{1}{2}}+2.064\right]^{\frac{1}{3}}-\left[(5.2635)^{\frac{1}{2}}+2.064\right]^{-\frac{1}{3}}\right] \\
& =\frac{1}{2}\left[[2.294+2.064]^{\frac{1}{3}}-[2.294+2.064]^{-\frac{1}{3}}\right]=\frac{1}{2}[1.6334-0.6122] \simeq 0.5107
\end{aligned}
$$

$$
C_{0}=y_{N}=0.5107 \quad \mathrm{k}=1 \quad b_{k}=2 \times 0.5107 \sin \left[\frac{(2-1) \pi}{2 \times 3}\right]=0.5107
$$

$$
\begin{aligned}
& c_{k}=y_{N}^{2}+\cos ^{2}\left[\frac{(2 k-1) \pi}{2 N}\right] \\
& \begin{aligned}
\mathrm{k}=1
\end{aligned} \\
& \qquad \begin{aligned}
c_{k} & =0.5107^{2}+\cos ^{2}\left[\frac{(2-1) \pi}{2 \times 3}\right] \\
& =0.5107^{2}+\cos ^{2}\left[\frac{\pi}{6}\right] \\
& =0.5107^{2}+\left[\frac{1+\cos \left(\frac{2 \pi}{6}\right)}{2}\right] \\
& =0.2608+0.75=1.0108
\end{aligned}
\end{aligned}
$$

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \times \frac{B_{1}}{s^{2}+b_{k} s+c_{k}}
$$

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+0.5107} \times \frac{B_{1}}{s^{2}+b_{1} s+c_{1}}
$$

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+0.5107} \times \frac{B_{1}}{s^{2}+0.5107 s+1.0108}
$$

When N is odd the values of parameter B_{k} are evaluated using

$$
\left.H\left(s_{n}\right)\right|_{s=0}=1
$$

$$
H\left(s_{n}\right)=\frac{B_{0} B_{1}}{0.5107 \times 1.0108}=1.9372 B_{0} B_{1}=1
$$

$$
B_{0} B_{1}=\frac{1}{1.9372}=0.5162
$$

$$
B_{0}=B_{1}
$$

$$
B_{0}^{2}=0.5162
$$

$$
B_{0}=\sqrt{0.5162}=0.7185
$$

$$
\begin{gathered}
H\left(s_{n}\right)=\frac{B_{0}}{s+0.5107} \times \frac{B_{1}}{s^{2}+0.5107 s+1.0108}=\frac{0.7185}{s+0.5107} \times \frac{0.7185}{s^{2}+0.5107 s+1.0108} \\
H\left(s_{n}\right)=\frac{0.5162}{s^{3}+1.0214 s^{2}+1.2716 s+0.5162}
\end{gathered}
$$

Unnomalized transfer function, $\mathrm{H}(\mathrm{s})$ and $\Omega_{p}=0.7854 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{3}(s)\right|_{s \rightarrow \frac{s}{\Omega_{p}}}=\left.\frac{0.5162}{s^{3}+1.0214 s^{2}+1.2716 s+0.5162}\right|_{s \rightarrow \frac{s}{\Omega_{p}}} \\
& =\frac{0.5162}{\frac{s^{3}}{\Omega_{p}^{3}}+1.0214 \frac{s^{2}}{\Omega_{p}^{2}}+1.2716 \frac{s}{\Omega_{p}}+0.5162} \\
& =\frac{0.5162}{\frac{s^{3}+1.0214 \Omega_{p} s^{2}+1.2716 \Omega_{p}^{2} s+\Omega_{p}^{3}}{\Omega_{p}^{3}}} \\
& =\frac{\Omega_{p}^{3}}{s^{3}+1.0214 \Omega_{p} s^{2}+1.2716 \Omega_{p}^{2} s+\Omega_{p}^{3}} \\
& =\frac{0.5162 \times 0.7854^{3}}{s^{3}+1.0214 \times 0.7854 s^{2}+1.2716 \times 0.7854^{2} s+0.7854^{3}} \\
& =\frac{0.250}{s^{3}+0.80229 s^{2}+0.7844 s+0.2501}
\end{aligned}
$$

Design a Chebyshev IIR low pass filter that has to meet the following specifications
i) passband ripple $\leq 1.0 \mathrm{~dB}$ and passband edge frequency $1 \mathrm{rad} / \mathrm{sec}$
ii) Stopband attenuation $\geq 15.0 \mathrm{~dB}$ and Stopband edge frequency $1.5 \mathrm{rad} / \mathrm{sec}$

Solution:
Passband ripple $K_{p}=1.0 \mathrm{~dB}$ or in normal value is $K_{p}=10^{K_{p} / 20}=10^{-1 / 20}=0.891$ Stopband ripple $K_{s}=15.0 \mathrm{~dB}$ or in normal value is $K_{s}=10^{K_{s} / 20}=10^{-15 / 20}=0.177$ Passband edge frequency $=1 \mathrm{rad} / \mathrm{sec}$ Stopband edge frequency $=1.5 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
N_{1} & =\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / K_{s}^{2}\right)-1}{\left(1 / K_{p}^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)} \\
& =\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / 0.177^{2}\right)-1}{\left(1 / 0.891^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{1.5}{1.0}\right)} \\
& =\frac{\cosh ^{-1}\left[\frac{31.0}{0.26}\right]^{\frac{1}{2}}}{\cosh ^{-1}(1.5)}=\frac{\cosh ^{-1}[11.0]}{\cosh ^{-1}[1.5]} \\
& =\frac{3.08}{0.96}=3.2 \simeq 4
\end{aligned}
$$

Figure 17: LPF specifications

When N is Even

$$
H\left(s_{n}\right)=\prod_{k=1}^{\frac{N}{2}} \frac{B_{k}}{s^{2}+b_{k} s+c_{k}}
$$

$$
H\left(s_{n}\right)=\frac{B_{1}}{s^{2}+b_{1} s+c_{1}} \times \frac{B_{2}}{s^{2}+b_{2} s+c_{2}}
$$

$$
N=4 k=\frac{N}{2}=\frac{4}{2}=2
$$

$$
\begin{aligned}
\epsilon & =\left[\left(1 / K_{p}^{2}\right)-1\right]^{\frac{1}{2}} \\
& =\left[\left(1 / 0.891^{2}\right)-1\right]^{\frac{1}{2}}=0.51
\end{aligned}
$$

$$
\begin{aligned}
y_{N} & =\frac{1}{2}\left[\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{\frac{1}{N}}-\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{-\frac{1}{N}}\right] \\
& =\frac{1}{2}\left[\left[\left(\frac{1}{0.51^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{0.51}\right]^{\frac{1}{4}}-\left[\left(\frac{1}{0.51^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{0.51}\right]^{-\frac{1}{4}}\right] \\
& =\frac{1}{2}\left[\left[(4.84)^{\frac{1}{2}}+1.96\right]^{\frac{1}{4}}-\left[(4.84)^{\frac{1}{2}}+1.96\right]^{-\frac{1}{4}}\right] \\
& =\frac{1}{2}\left[[2.2+1.96]^{\frac{1}{4}}-[2.2+1.96]^{-\frac{1}{4}}\right]=\frac{1}{2}[1.428-0.7] \simeq 0.364
\end{aligned}
$$

$$
C_{0}=y_{N}=0.364 \quad \mathrm{k}=1 \quad b_{k}=2 \times y_{N} \sin \left[\frac{(2 k-1) \pi}{2 \times N}\right]
$$

$$
\begin{aligned}
& \mathrm{k}=1 \\
& b_{1}=2 \times 0.364 \sin \left[\frac{(2-1) \pi}{2 \times 4}\right]=0.278 \\
& \mathrm{k}=2 \\
& b_{2}=2 \times 0.364 \sin \left[\frac{(2 \times 2-1) \pi}{2 \times 4}\right]=0.672 \\
& c_{k}=y_{N}^{2}+\cos ^{2}\left[\frac{(2 k-1) \pi}{2 N}\right]
\end{aligned} \begin{array}{r}
\mathrm{k}=1 \\
\qquad \begin{aligned}
c_{1} & =0.364^{2}+\cos ^{2}\left[\frac{(2-1) \pi}{2 \times 4}\right] \\
& =0.132+\cos ^{2}\left[\frac{\pi}{8}\right] \\
& =0.132+0.853 \\
& =0.132+0.853=0.985
\end{aligned}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{k}=2 \\
& c_{2}=0.364^{2}+\cos ^{2}\left[\frac{(2 \times 2-1) \pi}{2 \times 4}\right] \\
&=0.132+\cos ^{2}\left[\frac{3 \pi}{8}\right] \\
&=0.132+\left[\frac{1+\cos \left(\frac{6 \pi}{8}\right)}{2}\right] \\
&=0.132+0.146=0.278
\end{aligned}
$$

$$
H\left(s_{n}\right)=\frac{B_{1}}{s^{2}+b_{1} s+c_{1}} \times \frac{B_{2}}{s^{2}+b_{2} s+c_{2}}
$$

$H\left(s_{n}\right)=\frac{B_{1}}{s^{2}+0.278 s+0.985} \times \frac{B_{2}}{s^{2}+0.672 s+0.278}$
When N is odd the values of parameter B_{k} are evaluated using

$$
\left.H\left(s_{n}\right)\right|_{s=0}=\frac{1}{\left(1+\epsilon^{2}\right)^{1 / 2}}=\frac{1}{\left(1+0.51^{2}\right)^{1 / 2}}=0.89
$$

$$
H\left(s_{n}\right)=\frac{B_{1} B_{2}}{0.985 \times 0.278}=0.89
$$

$$
B_{1} B_{2}=0.244
$$

$B_{1}=B_{2}$

$$
\begin{gathered}
B_{1}^{2}=0.244 \\
B_{1}=\sqrt{0.264}=0.493
\end{gathered}
$$

$$
\begin{gathered}
H\left(s_{n}\right)=\frac{B_{1}}{s^{2}+0.278 s+0.985} \times \frac{B_{2}}{s^{2}+0.672 s+0.278}=\frac{0.493}{s^{2}+0.278 s+0.985} \times \frac{0.493}{s^{2}+0.672 s+0.278} \\
H\left(s_{n}\right)=\frac{0.243}{s^{4}+0.95 s^{3}+1.45 s^{2}+1.434 s+0.2738}
\end{gathered}
$$

Unnomalized transfer function, $\mathrm{H}(\mathrm{s})$ and $\Omega_{p}=1.0 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{4}(s)\right|_{s \rightarrow \frac{s}{\Omega_{p}}}=\left.\frac{0.243}{s^{4}+0.95 s^{3}+1.45 s^{2}+1.434 s+0.2738}\right|_{s \rightarrow \frac{s}{1}} \\
& =\frac{0.263}{s^{4}+0.95 s^{3}+1.45 s^{2}+1.434 s+0.2738}
\end{aligned}
$$

July 2014, Dec 2014 Design a Chebyshev IIR low pass filter that has to meet the following specifications
i) passband ripple $\leq 2 \mathrm{~dB}$ and passband edge frequency $1 \mathrm{rad} / \mathrm{sec}$
ii) Stopband attenuation $\geq 20 \mathrm{~dB}$ and Stopband edge frequency $1.3 \mathrm{rad} / \mathrm{sec}$

Solution:
Passband ripple $K_{p}=2 \mathrm{~dB}$
or in normal value is $K_{p}=10^{K_{p} / 20}=10^{-2 / 20}=0.7943$
Stopband ripple $K_{s}=12.395 \mathrm{~dB}$
or in normal value is $K_{s}=10^{K_{s} / 20}=10^{-20 / 20}=0.1$
Passband edge frequency $1 \mathrm{rad} / \mathrm{sec}$
Stopband edge frequency $1.3 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
N_{1} & =\frac{\cosh ^{-1}\left[\left[\frac{\left(1 / K_{s}^{2}\right)-1}{\left(1 / K_{p}^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{\Omega_{s}}{\Omega_{p}}\right)} \\
= & \frac{\cosh ^{-1}\left[\left[\frac{\left(1 / 0.1^{2}\right)-1}{\left(1 / 0.7943^{2}\right)-1}\right]^{\frac{1}{2}}\right]}{\cosh ^{-1}\left(\frac{1.3}{1.0}\right)} \\
= & \frac{\cosh ^{-1}\left[\frac{99.0}{0.585}\right]^{\frac{1}{2}}}{\cosh ^{-1}\left(\frac{1.3}{1.0}\right)}=\frac{\cosh ^{-1}[13.00]}{\cosh ^{-1}[1.3]}=\frac{3.256}{0.756}=4.3 \simeq 5
\end{aligned}
$$

When N is odd

$$
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \times \frac{B_{1}}{s^{2}+b_{1} s+c_{1}} \times \frac{B_{2}}{s^{2}+b_{2} s+c_{2}}
$$

$$
\begin{array}{rlrl}
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \prod_{k=1}^{\frac{N-1}{2}} \frac{B_{k}}{s^{2}+b_{k} s+c_{k}} \\
& \epsilon & =\left[\left(1 / K_{p}^{2}\right)-1\right]^{\frac{1}{2}} \\
N=5 k & =\frac{N-1}{2}=\frac{5-1}{2}=2 & =\left[\left(1 / 0.7943^{2}\right)-1\right]^{\frac{1}{2}}=0.7648
\end{array}
$$

$$
\begin{aligned}
y_{N} & =\frac{1}{2}\left[\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{\frac{1}{N}}-\left[\left(\frac{1}{\epsilon^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{\epsilon}\right]^{-\frac{1}{N}}\right] \\
& =\frac{1}{2}\left[\left[\left(\frac{1}{0.7648^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{0.7648}\right]^{\frac{1}{5}}-\left[\left(\frac{1}{0.7648^{2}}+1\right)^{\frac{1}{2}}+\frac{1}{0.7648}\right]^{-\frac{1}{5}}\right] \\
& =\frac{1}{2}\left[\left[(2.71)^{\frac{1}{2}}+1.307\right]^{\frac{1}{5}}-\left[(2.71)^{\frac{1}{2}}+1.307\right]^{-\frac{1}{5}}\right] \\
& =\frac{1}{2}\left[[1.646+1.307]^{\frac{1}{5}}-[1.646+1.307]^{-\frac{1}{5}}\right]=\frac{1}{2}[1.241-0.805] \simeq 0.218
\end{aligned}
$$

$$
C_{0}=y_{N}=0.218 \quad b_{k}=2 \times y_{N} \sin \left[\frac{(2 k-1) \pi}{2 \times N}\right] \mathrm{k}=1 \quad b_{1}=2 \times 0.218 \sin \left[\frac{(2-1) \pi}{2 \times 5}\right]=0.134
$$

$k=2$

$$
b_{2}=2 \times 0.218 \sin \left[\frac{(4-1) \pi}{2 \times 5}\right]=0.352
$$

$$
c_{k}=y_{N}^{2}+\cos ^{2}\left[\frac{(2 k-1) \pi}{2 N}\right]
$$

$$
k=2
$$

$$
\mathrm{k}=1
$$

$$
c_{2}=0.218^{2}+\cos ^{2}\left[\frac{(4-1) \pi}{2 \times 5}\right]
$$

$$
c_{1}=0.218^{2}+\cos ^{2}\left[\frac{(2-1) \pi}{2 \times 5}\right]
$$

$$
=0.047+\cos ^{2}\left[\frac{3 \pi}{10}\right]
$$

$$
=0.047+\cos ^{2}\left[\frac{\pi}{10}\right]
$$

$$
=0.047+\left[\frac{1+\cos \left(\frac{2 \times 3 \pi}{10}\right)}{2}\right]
$$

$$
=0.047+\left[\frac{1+\cos \left(\frac{2 \pi}{10}\right)}{2}\right]
$$

$$
=0.047+0.345=0.392
$$

$$
=0.047+0.904=0.951
$$

$$
\begin{gathered}
H\left(s_{n}\right)=\frac{B_{0}}{s+c_{0}} \times \frac{B_{1}}{s^{2}+b_{1} s+c_{1}} \times \frac{B_{2}}{s^{2}+b_{2} s+c_{2}} \\
H\left(s_{n}\right)=\frac{B_{0}}{s+0.218} \times \frac{B_{1}}{s^{2}+0.134 s+0.951} \times \frac{B_{2}}{s^{2}+0.352 s+0.392}
\end{gathered}
$$

When N is odd the values of parameter B_{k} are evaluated using

$$
\left.H\left(s_{n}\right)\right|_{s=0}=1
$$

When N is odd the values of parameter B_{k} are evaluated using

$$
\begin{gathered}
\left.H\left(s_{n}\right)\right|_{s=0}=1 \\
H\left(s_{n}\right)=\frac{B_{0} B_{1} B_{2}}{0.218 \times 0.951 \times 0.392}=12.3 B_{0} B_{1} B_{2}=1 \\
B_{0} B_{1} B_{2}=\frac{1}{12.3}=0.081
\end{gathered}
$$

$B_{0}=B_{1}=B_{2}$ Then $B_{0}^{3}=0.081 B_{0}=\sqrt[3]{0.081}=0.081^{\frac{1}{3}}=0.432$

$$
\begin{gathered}
H\left(s_{n}\right)=\frac{0.432}{s+0.218} \times \frac{0.432}{s^{2}+0.134 s+0.951} \times \frac{0.432}{s^{2}+0.352 s+0.392} \\
H\left(s_{n}\right)=\frac{0.081}{s^{5}+0.7048 s^{4}+1.496 s^{3}+0.689 s^{2}+0.456 s+0.081}
\end{gathered}
$$

Unnomalized transfer function, $\mathrm{H}(\mathrm{s})$ and $\Omega_{p}=1 \mathrm{rad} / \mathrm{sec}$
Hence

$$
H\left(s_{n}\right)=\frac{0.081}{s^{5}+0.7048 s^{4}+1.496 s^{3}+0.689 s^{2}+0.456 s+0.081}
$$

Dec 2014: Design A Chebyshev I low pass filter that has to meet the following specifications
i) passband ripple $\leq 2 \mathrm{~dB}$ and passband edge frequency $1 \mathrm{rad} / \mathrm{sec}$
ii) Stopband attenuation $\geq 20 \mathrm{~dB}$ and Stopband edge frequency $1.3 \mathrm{rad} / \mathrm{sec}$

Solution:
$\Omega_{p}=1 \mathrm{rad} / \mathrm{sec}, \Omega_{s}=1.3 \mathrm{rad} / \mathrm{sec}$, $K_{p}=-2 \mathrm{~dB}, K_{s}=-20 \mathrm{~dB}$,

$$
K_{p}=20 \log \left[\frac{1}{\sqrt{1+\epsilon^{2}}}\right]=-2
$$

$\epsilon=0.76478$

$$
\begin{gathered}
\delta_{p}=1-\frac{1}{\sqrt{1+\epsilon^{2}}}=0.20567 \\
K_{s}=20 \log \delta_{s}=-20
\end{gathered}
$$

$\delta_{s}=0.1$

$$
\begin{gathered}
d=\sqrt{\frac{\left(1-\delta_{p}\right)^{-2}-1}{\delta_{s}^{-2}-1}}=0.077 \\
K=\frac{\Omega_{p}}{\Omega_{s}}=\frac{1}{1.3}=0.769
\end{gathered}
$$

Figure 18: LPF specifications

The order of the filter is

$$
N=\frac{\cosh ^{-1}\left(\frac{1}{d}\right)}{\cosh ^{-1}\left(\frac{1}{K}\right)}=4.3 \simeq 5
$$

$$
\begin{gathered}
a=\frac{1}{2}\left(\frac{1+\sqrt{1+\epsilon^{2}}}{\epsilon}\right)^{\frac{1}{N}}-\frac{1}{2}\left(\frac{1+\sqrt{1+\epsilon^{2}}}{\epsilon}\right)^{-\frac{1}{N}}=0.21830398 \\
b=\frac{1}{2}\left(\frac{1+\sqrt{1+\epsilon^{2}}}{\epsilon}\right)^{\frac{1}{N}}+\frac{1}{2}\left(\frac{1+\sqrt{1+\epsilon^{2}}}{\epsilon}\right)^{-\frac{1}{N}}=1.0235520 \\
\Omega_{k}=b \cos \left[(2 k-1) \frac{\pi}{2 N}\right]=b \cos \left[(2 k-1) \frac{\pi}{10}\right] \\
\sigma_{k}=-a \sin \left[(2 k-1) \frac{\pi}{2 N}\right]=-a \sin \left[(2 k-1) \frac{\pi}{10}\right]
\end{gathered}
$$

where $k=1,2, \ldots 2 N$ i.e., $k=1,2, \ldots 10$
The poles those are lie on left half of the s plane is

k	σ_{k}	Ω_{k}
1	-0.0674610	0.9734557
2	-0.1766151	0.6016287
3	-0.2183083	0
4	-0.1766151	-0.6016287
5	-0.0674610	-0.9734557

$$
\begin{aligned}
H_{5}(s) & =\frac{K_{N}}{\prod_{L H P o n l y}\left(s-s_{k}\right)}=\frac{K_{N}}{\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{3}\right)\left(s-s_{4}\right)} \\
& =\frac{K_{N}}{(s+0.067461-j 0.9734557)(s+0.067461+j 0.9734557)} \\
& =\frac{(s+0.1766151-j 0.6016287)(s+0.1766151+j 0.6016287)(s+0.2180383)}{\left(s^{2}+0.134922 s+0.95215\right)\left(s^{2}+0.35323 s+0.393115\right)(s+0.2183083)} \\
& =\frac{K_{N}}{s^{5}+0.70646 s^{4}+1.4995 s^{3}+0.6934 s^{2}+0.459349 s+0.08172}
\end{aligned}
$$

N is odd $K_{N}=b_{o}=0.08172$

$$
H_{5}(s)=\frac{0.08172}{s^{5}+0.70646 s^{4}+1.4995 s^{3}+0.6934 s^{2}+0.459349 s+0.08172}
$$

Verification

$$
\begin{aligned}
H_{a}(j \Omega) & =\frac{0.08172}{(j \Omega)^{5}+0.70646(j \Omega)^{4}-1.49(j \Omega)^{3}-0.693(j \Omega)^{2}+0.4593(j \Omega)+0.08172} \\
\left|H_{a}(j \Omega)\right| & =\frac{0.08172}{\sqrt{\left(.7064 \Omega^{4}-.693 \Omega^{2}+.0817\right)^{2}+j\left(\Omega^{5}-1.499 \Omega^{3}+.4593 \Omega\right)^{2}}} \\
20 \log \left|H_{a}(j \Omega)\right|_{1} & =-2 d B \\
20 \log \left|H_{a}(j \Omega)\right|_{1} .3 & =-24.5 d B
\end{aligned}
$$

Analog to analog frequency transformations

Design steps for highpass filter:
From the given specifications
(1) Determine stopband frequency of the normalized lowpass filter by $\Omega_{s}=\frac{\Omega_{p}}{\Omega_{s}^{\prime}}$
(2) Determine the order of the Filter using

$$
N=\frac{\log \left[\frac{10 \frac{-K_{p}}{10}-1}{\frac{-K_{S}}{10}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]}
$$

(3) Determine the cutoff frequency Ω_{C} using

$$
\Omega_{C}=\frac{\Omega_{s}}{\left(10^{\frac{-K_{s}}{10}}-1\right)^{\frac{1}{2 N}}} \quad O R \Omega_{C}=\frac{\Omega_{p}}{\left(10^{\frac{-K_{p}}{10}}-1\right)^{\frac{1}{2 N}}}
$$

44 Determine the transfer function of normalized Butterworth filter by

$$
H_{N}(s)=\frac{1}{\prod_{L H P}\left(s-s_{k}\right)}=\frac{1}{B_{N}(s)}
$$

(5) From analog lowpass to high frequency transformation, find the desired transfer function by substituting the following

$$
H_{a}(s)=\left.H_{N}(s)\right|_{s \rightarrow \frac{\Omega_{p}}{\Omega_{c} s}}
$$

Design a Butterworth analog highpass filter that will meet the following specifications
i) Maximum passband attenuation gain 2 dB
ii) Passband edge frequency $=200 \mathrm{rad} / \mathrm{sec}$
iii) Minimum stopband attenuation $=20 \mathrm{~dB}$
iv) Stopband edge frequency $=100 \mathrm{rad} / \mathrm{sec}$

Determine the transfer function $H_{a}(s)$ of the lowest order Butterworth filter to meet the above the specifications Solution:

Figure 19: HPF specifications

$$
\begin{aligned}
& \Omega_{S}=\frac{\Omega_{p}}{\Omega^{\prime}{ }_{S}}=\frac{200}{100}=2 \\
& \Omega_{S}=2 \quad \Omega_{p}=1
\end{aligned}
$$

Figure 20: normalized LPF specifications

The order of the filter is

$$
N=\frac{\log \left[\frac{10 \frac{-\kappa_{p}}{10}-1}{\frac{-K_{S}}{10}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]}=3.7 \simeq 4
$$

For Even $\mathrm{N}=4$

$$
H\left(s_{n}\right)=\prod_{k=1}^{\frac{N}{2}} \frac{1}{s^{2}+b_{k} s+1}
$$

where $b_{k}=2 \sin \left[\frac{(2 k-1) \pi}{2 N}\right]$
$\mathrm{N}=4$
$k=\frac{N}{2}=\frac{4}{2}=2$
$\mathrm{k}=1$
$b_{k}=b_{1}=2 \sin \left[\frac{(2-1) \pi}{2 \times 4}\right]=0.7654$
$\mathrm{k}=2$
$b_{k}=b_{2}=2 \sin \left[\frac{(4-1) \pi}{2 \times 4}\right]=1.8478$

$$
\begin{aligned}
H\left(s_{n}\right) & =\frac{1}{\left(s^{2}+0.7654 s+1\right)\left(s^{2}+1.8478 s+1\right)} \\
& =\frac{1}{s^{4}+2.6118 s^{3}+3.4117 s^{2}+2.6118 s+1}
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{c} & =\frac{\Omega_{s}}{\left(10^{\frac{-k_{s}}{10}}-1\right)^{\frac{1}{2 N}}} \\
& =\frac{2}{\left(10^{\frac{20}{10}}-1\right)^{\frac{1}{8}}}=\frac{2}{1.776} \\
& =1.126 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
H_{a}(s) & =\frac{1}{\left(s^{2}+0.7654 s+1\right)\left(s^{2}+1.8478 s+1\right)} \\
H_{a}(s) & =\left.H_{p}(s)\right|_{s \rightarrow \frac{\Omega_{p}}{\Omega_{c} s}} \\
& =\left.H_{4}(s)\right|_{s \rightarrow \frac{20}{1.126 s}} \\
& =\left.H_{4}(s)\right|_{s \rightarrow \frac{177.62}{s}} \\
& =\frac{s^{4}}{\left(s^{2}+135.95 s+31548.86\right)\left(s^{4}+328.206 s+31548.86\right)}
\end{aligned}
$$

Verification

$$
\left.\left.\left.\begin{array}{rl}
H_{a}(j \Omega) & =\frac{\Omega^{4}}{\left[\left(34980.7521-\Omega^{2}\right)+j 1431.1464 \Omega\right]} \\
\mid\left[\left(34980.7521-\Omega^{2}\right)+j 1431.1464 \Omega\right]
\end{array}\right] \frac{\Omega^{4}}{\sqrt{\left[\left(34980.7521-\Omega^{2}\right)^{2}+(1431.1464 \Omega)^{2}\right]}}\right] \sqrt{\left[\left(34980.7521-\Omega^{2}\right)^{2}+(1431.1464 \Omega)^{2}\right]}\right)
$$

Design a Butterworth analog bandpass filter that will meet the following specifications
i) a -3.0103 dB upper and lower cutoff frequency of 50 Hz and 20 KHz
ii) a Stopband attenuation of atleast 20 dB at 20 Hz and 45 KHz and
iii) Monotonic frequency response.

Solution:

Figure 21: HPF specifications

Figure 22: normalized LPF specifications

$$
\begin{aligned}
& A=\frac{-\Omega^{2}+\Omega_{l} \Omega_{u}}{\Omega_{l}\left(\Omega_{u}-\Omega_{l}\right)}=2.51 \\
& B=\frac{-\Omega^{2}{ }_{2}-\Omega_{l} \Omega_{u}}{\Omega_{2}\left(\Omega_{u}-\Omega_{l}\right)}=2.25 \\
& \Omega_{S}=\operatorname{Min}[|A|,|B|]=2.25
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{1} & =2 \pi \times 20=125.663 \mathrm{rad} / \mathrm{sec} \\
\Omega_{2} & =2 \pi \times 45 \times 10^{3}=2.827 \times 10^{5} \mathrm{rad} / \mathrm{sec} \\
\Omega_{u} & =2 \pi \times 20 \times 10^{3}=1.257 \times 10^{5} \mathrm{rad} / \mathrm{sec} \\
\Omega_{l} & =2 \pi \times 50 \times 10^{3}=314.159 \times \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

The order of the filter is

$$
N=\frac{\log \left[\frac{10 \frac{-K_{p}}{10}-1}{10 \frac{-K_{S}}{10}-1}\right]}{2 \log \left[\frac{\Omega_{p}}{\Omega_{S}}\right]}=2.83 \simeq 3
$$

For odd $\mathrm{N}=3$

$$
H\left(s_{n}\right)=\frac{1}{(s+1)} \prod_{k=1}^{\frac{N-1}{2}} \frac{1}{s^{2}+b_{k} s+1}
$$

where $b_{k}=2 \sin \left[\frac{(2 k-1) \pi}{2 N}\right]$
$\mathrm{N}=3$
$k=\frac{N-1}{2}=\frac{3-1}{2}=1$
$\mathrm{k}=1$
$b_{k}=b_{1}=2 \sin \left[\frac{(2-1) \pi}{2 \times 3}\right]=1$

$$
\begin{aligned}
H\left(s_{n}\right) & =\frac{1}{(s+1)\left(s^{2}+s+1\right)} \\
& =\frac{1}{s^{3}+2 s^{2}+2 s+1}
\end{aligned}
$$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{3}(s)\right|_{s \rightarrow \frac{s^{2}+\Omega_{u} \Omega_{l}}{s\left(\Omega_{u}-\Omega_{l}\right)}} \\
& =\left.H_{3}(s)\right|_{s \rightarrow \frac{s^{2}+3.949 \times 10^{7}}{s\left(1.2538 \times 10^{5}\right)}}
\end{aligned}
$$

Let $H(s)=\frac{1}{s^{2}+s+1}$ represent the transfer function of LPF with passband of $1 \mathrm{rad} / \mathrm{sec}$. Use frequency transformation to find the transfer functions of the following analog filters
i) A lowpass filter with a passband of $10 \mathrm{rad} / \mathrm{sec}$
ii) A highpass filter with a cutoff frequency of $1 \mathrm{rad} / \mathrm{sec}$
iii) A highpass filter with a cutoff frequency of $10 \mathrm{rad} / \mathrm{sec}$
iv) A bandpass filter with a passband of $10 \mathrm{rad} / \mathrm{sec}$ and a center frequency of 100 rad/sed
v) A bandstop filter with a stopband of $2 \mathrm{rad} / \mathrm{sec}$ and a center frequency of 10 rad/sed
Solution: Lowpass to highpass transformation

$$
H(s)=\frac{1}{\left(s^{2}+s+1\right)}
$$

$$
\begin{aligned}
H_{a}(s) & =\left.H_{3}(s)\right|_{s \rightarrow \frac{s}{10}} \\
& =\frac{1}{\left(\frac{s}{10}\right)^{2}+\left(\frac{s}{10}\right)+1}=\frac{100}{s^{2}+10 s+100}
\end{aligned}
$$

Lowpass to highpass transformation

$$
\begin{aligned}
H_{a}(s) & =\left.H_{3}(s)\right|_{s \rightarrow \frac{\Omega_{p}}{\Omega_{c} s}}=\frac{10}{1 s} \\
& =\frac{1}{\left(\frac{10}{5}\right)^{2}+\left(\frac{10}{s}\right)+1}=\frac{s^{2}}{s^{2}+10 s+100}
\end{aligned}
$$

Lowpass to bandpass transformation

$$
s \rightarrow \frac{s^{2}+\Omega_{u} \Omega_{l}}{s\left(\Omega_{u}-\Omega_{l}\right)}=\frac{s+\Omega_{0}^{2}}{s+B_{0}}
$$

where $\Omega_{0}=\sqrt{\Omega_{u} \Omega_{l}}$ and $B_{0}=\Omega_{u} \Omega_{l}$

$$
\begin{aligned}
H_{a}(s) & =\left.H(s)\right|_{s \rightarrow \frac{s^{2}+10 \times 10^{4}}{10 s}} \\
& ==\frac{100 s^{2}}{s^{4}+10 s^{3}+20100 s^{2}+10^{4} s+10^{8}}
\end{aligned}
$$

Lowpass to bandstop transformation

$$
s \rightarrow \frac{s\left(\Omega_{u}-\Omega_{l}\right)}{s^{2}+\Omega_{u} \Omega_{l}}=\frac{s B_{0}}{s^{2}+\Omega^{2}}
$$

$$
\begin{aligned}
H_{a}(s) & =\left.H(s)\right|_{s \rightarrow \frac{2 s}{s^{2}+100}} \\
& ==\frac{\left(s^{2}+100\right)^{2}}{s^{4}+2 s^{3}+204 s^{2}+200 s+10^{4}}
\end{aligned}
$$

Table 2: Comparison between Butterworth and Chebyshev Filter

	Butterworth Filter	Chebyshev Filter
1	The magnitude frequency response is montonically decreasing	The magnitude frequency response has ripples in passband or stopband
2	The poles lie on a circle in the s plane	The poles lie on an ellipse in the s plane
3	For a given frequency specifications the number of poles are more	For a given frequency specifications the number of poles are less
4	For a given order N the width of the transition band is more	For a given order N the width of the transition band is less
5	Only few parameters has to be calculated to determine the transfer function	A large number of parameters has to be calculated to determine the transfer function

Table 3: Comparison between IIR and FIR Filter

	IIR Filter	FIR Filter
1	Linear characteristic cannot be achieved	Linear characteristic can be achieved
2	The impulse response cannot be di- rectly converted to digital filter trans- fer function	The impulse response can be di- rectly converted to digital filter trans- fer function It is recursive filter and may be stable It may be recursive or non recursive filter and recursive filter are stable
4	The specifications include the desired characteristics for magnitude response only	The specifications include the desired characteristics for both magnitude and phase response
5	The design involves design of analog filter and then transforming analog to digital filter	The digital filter can be directly de- signed to achieve the desired specifi- cations.

References

J. G. Proakis and D. G. Monalakis, Digital signal processing Principles Algorithms \& Applications, 4th ed. Pearson education, 2007.

Oppenheim and Schaffer, Discrete Time Signal Processing. Pearson education, Prentice Hall, 2003.

S. K. Mitra, Digital Signal Processing. Tata Mc-Graw Hill, 2004.
L. Tan, Digital Signal Processing. Elsivier publications, 2007.

