
Linear Block Codes

Manjunatha. P
manjup.jnnce@gmail.com

Professor
Dept. of ECE

J.N.N. College of Engineering, Shimoga

September 21, 2013



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Overview

1 Generator and Parity check Matrices

2 Encoding circuits

3 Syndrome and Error Detection

4 Minimum Distance Considerations

5 Error detecting and Error correcting capabilities

6 Standard array and Syndrome decoding

7 Decoding circuits

8 Hamming Codes

9 Reed Muller codes

10 The (24, 12) Golay code

11 Product codes and Interleaved codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 2 / 83



Introduction to Linear Block Codes Linear Block Codes

Introduction to Linear Block Codes

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 3 / 83



Introduction to Linear Block Codes Linear Block Codes

Transmission through noisy channel.

Transmission errors can occur, 1’s become 0’s and 0’s become 1’s.

To correct the errors, some redundancy bits are added to the
information sequence, at the receiver the correlation is exploited to
locate transmission errors.

Here, only binary transmission is considered.
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Introduction to Linear Block Codes Linear Block Codes

Type of Errors

Single-bit error

Only 1 bit in the data unit (packet, frame, cell) has changed.

Either 1 to 0, or 0 to 1.

 

 

Burst error

2 or more bits in the data unit have changed..

More likely to occur than the single-bit error because the duration of
noise is normally longer than the duration of 1 bit
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Introduction to Linear Block Codes Linear Block Codes

The output of an information source is a sequence of binary digits
“0” or “1”

Information sequence is segmented into message block of fixed length,
denoted by u.

Each message block consists of k information digits. There are a total
of 2k distinct message.

The encoder transforms each input message u into a binary n-tuple v
with n > k

This n-tuple v is referred to as the code word (or code vector) of the
message u.

Encoder
Message block

(k info digits)
(2k distinct message)

U v

Code word

(n tuple, n>k)
(2k distinct code word)

Figure: The encoder
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Introduction to Linear Block Codes Linear Block Codes

There are distinct 2k code words.

This set of 2k code words is called a block code.

For a block code to be useful, there should be a one-to-one
correspondence between a message u and its code word v.

A desirable structure for a block code to possess is the linearity.

With this structure, the encoding complexity will be greatly reduced.

Definition : A block code of length n and 2k code word is called a
linear (n, k) code iff its 2k code words form a k-dimensional subspace
of the vector space of all the n-tuple over the field GF(2).

A binary block code is linear iff the module-2 sum of two code word is
also a code word.

The block code given in Table 3.1 is a (7, 4) linear code.
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Introduction to Linear Block Codes Linear Block Codes

Message Codewords

(0 0 0 0) (0 0 0 0 0 0 0)
(1 0 0 0) (1 1 0 1 0 0 0)
(0 1 0 0) (0 1 1 0 1 0 0)
(1 1 0 0) (1 0 1 1 1 0 0)
(0 0 1 0) (1 1 1 0 0 1 0)
(1 0 1 0) (0 0 1 1 0 1 0)
(0 1 1 0) (1 0 0 0 1 1 0)
(1 1 1 0) (0 1 0 1 1 1 0)
(0 0 0 1) (1 0 1 0 0 0 1)
(1 0 0 1) (0 1 1 1 0 0 1)
(0 1 0 1) (1 1 0 0 1 0 1)
(1 1 0 1) (0 0 0 1 1 0 1)
(0 0 1 1) (0 1 1 0 0 1 1)
(1 0 1 1) (1 0 0 1 0 1 1)
(0 1 1 1) (0 0 1 0 1 1 1)
(1 1 1 1) (1 1 1 1 1 1 1)
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Introduction to Linear Block Codes Generator Matrix

Since an (n, k) linear code C is a k-dimensional subspace of the
vector space Vn of all the binary n tuple, it is possible to find k
linearly independent code word, g0, g0, . . . gk−1 in C

v = u0g0 + u1g1 + . . . uk−1gk−1 (1)

where ui = 0 or 1 for 0 ≤ i < k

Let us arrange these k linearly independent code words as the rows of a
k × n matrix as follows:

G =


g0
g1
...

gk−1

 =


g00 g01 g02 . . . g0,n−1
g10 g11 g12 . . . g1,n−1

...
gk−1,0 gk−1,1 gk−1,2 . . . gk−1,n−1

 (2)

where gi = (gi0, gi1, . . . gin−1)0 or 1 for 0 ≤ i < k
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k × n matrix as follows:

G =


g0
g1
...

gk−1

 =


g00 g01 g02 . . . g0,n−1
g10 g11 g12 . . . g1,n−1

...
gk−1,0 gk−1,1 gk−1,2 . . . gk−1,n−1

 (2)

where gi = (gi0, gi1, . . . gin−1)0 or 1 for 0 ≤ i < k
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Introduction to Linear Block Codes Generator Matrix

If u = (u0, u1, . . . , uk−1) is the message to be encoded, the corresponding
code word

v = U.G =
(
u0, u1, . . . , uk−1

)
.


g0
g1
...

gk−1

 (3)

v = u0g0 + u1g1 + . . . uk−1gk−1

Because the rows of G generate the (n, k) linear code C, the matrix G
is called a generator matrix for C

Note that any k linearly independent code words of an (n, k) linear
code can be used to form a generator matrix for the code

It follows from (3.3) that an (n, k) linear code is completely specified
by the k rows of a generator matrix G
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Introduction to Linear Block Codes Generator Matrix

The (7, 4) linear code given in Table 3.1 has the following matrix as a
generator matrix

If u = (1 1 0 1) is the message to be encoded, its corresponding code
word, according to (3.3), would be

G =


g0
g1
g2
g3

 =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1


If u = (1101) is the message to be encoded, its corresponding code
word, according to (3.3), would be

v = 1.g0 + 1.g1 + 0.g2 + 1.g3

=1.(1 1 0 1 0 0 0)+ 1.(0 1 1 0 1 0 0)+ 0.(1 1 1 0 0 1 0)+1. (1 0 1 0
0 0 1)

=(0 0 0 1 1 0 1)
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Introduction to Linear Block Codes Generator Matrix

A desirable property for a linear block code is the systematic structure
of the code words as shown in Fig. 3.1

where a code word is divided into two parts.

The message part consists of k information digits.

The redundant checking part consists of n - k parity-check digits.

A linear block code with this structure is referred to as a linear
systematic block code.

Redundant checking part

n-k digits

Message part

k digits

Figure: Systematic format of a codeword
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Introduction to Linear Block Codes Generator Matrix

A linear systematic (n, k) code is completely specified by a k x n matrix G
of the following form:

G =


g0
g1
g2
...

gk−1


P Matrix︷ ︸︸ ︷ kxk Identity Matrix︷ ︸︸ ︷

=


p00 p01 . . . p0,n−k−1 1 0 0 . . . 0
p10 p11 . . . p1,n−k−1 0 1 0 . . . 0
p20 p21 . . . p2,n−k−1 0 0 1 . . . 0

...
pk−1,0 pk−1,1 . . . pk−1,n−k−1 0 0 0 . . . 1

 (4)

where pij = 0 or 1
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Introduction to Linear Block Codes Generator Matrix

Let u = (u0, u1, . . . , uk−1) be the message to be encoded.

The corresponding code word is.

v = (v0, v1, . . . , vn−1) = (u0, u1, . . . , uk−1) · G (5)

It follows from (4) (5) that the components of V are

vn−k+i = ui for 0 ≤ i < k (6a)

vj = u0p0j +u1p1j + . . . ,+uk−1pk−1,j for 0 ≤ j < n−k (6b) (6)

Equation (6a) shows that the rightmost k digits of a code word v are
identical to the information digits u0, u1, . . . uk−1 to be encoded

Equation (6b) shown that the leftmost n-k redundant digits are linear
sums of the information digits.

The n-k equations given by (6b) are called parity-check equations of
the code.
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Introduction to Linear Block Codes Generator Matrix

The matrix G given in example 3.1

Let u = (u0, u1, u2, u3) be the message to be encoded.

Let v = (v0, v1, v2, v3, v4, v5, v6) be the corresponding code word.

Solution :

v = u · G =
(
u0, u1, u2, u3

)
.


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1


By matrix multiplication, we obtain the following digits of the code word v
v6 = u3, v5 = u2, v4 = u2, v3 = u0,v2 = u1 + u2 + u3, v1 = u0 + u1 + u2,
v0 = u0 + u2 + u3
The code word corresponding to the message (1 0 1 1) is (1 0 0 1 0 1 1)
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Introduction to Linear Block Codes Parity-Check Matrix

For any k x n matrix G with k linearly independent rows, there exists
an (n-k)x n matrix H with n-k linearly independent rows such that any
vector in the row space of G is orthogonal to the rows of H and any
vector that is orthogonal to the rows of H is in the row space of G.

An n-tuple v is a codeword in the code C generated by G if and only if

v · HT = 0

This matrix H is called a parity-check matrix of the code.

The 2n−k linear combinations of the rows of matrix H form an (n,
n-k) linear code Cd

This code is the null space of the (n, k) linear code C generated by
matrix G.

Cd is called the dual code of C
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Introduction to Linear Block Codes Parity-Check Matrix

If the generator matrix of an (n,k) linear code is in the systematic form of
(3.4), the parity-check matrix may take the following form:

H = [In−kP
T ] =

1 0 0 . . . 0 p00 p10 . . . pk−1,0
0 1 0 . . . 0 p01 p11 . . . pk−1,1
0 0 1 . . . 0 p02 p12 . . . pk−1,2
...
0 0 0 . . . 1 p0,n−k−1 p1,n−k−1 . . . pk−1,n−k−1

 (7)

Let hj be the j th row of H then inner product of the i th row of G is

gi .hj = pij + pij = 0

for 0 ≤ i < k and 0 ≤ j < n − k

This implies that
G · HT = 0
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Introduction to Linear Block Codes Parity-Check Matrix

Let u = (u0, u1, . . . uk−1) be the message to be encoded.

In systematic form the corresponding code word would be
v = (v0, v1, . . . vn−1) = (v0, v1, . . . vn−k−1, u0, u1, . . . uk−1)

Using the fact that v .HT = 0, we obtain

vj + u0p0j + u1p1j . . . + uk−1pk−1j = 0 (8)

for 0 ≤ j < n − k

Rearranging the equation of (8), we obtain the same parity-check
equations of (6b)

An (n, k) linear code is completely specified by its parity check
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Introduction to Linear Block Codes Parity-Check Matrix

v .HT = (v0, v1, . . . vn−k−1, u0, u1, . . . uk−1).HT = 0

HT =



1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1

p00 p01 p02 . . . p0,n−k−1
p10 p11 p12 . . . p1,n−k−1

...
pk−1,0 pk−1,1 pk−1,2 . . . pk−1,n−k−1



v0(1) + v1(1) + vn−1(1) + u0(p00 p01 . . . p0,n−k−1)+
+u1(p10 p11 p12 . . . p1,n−k−1) +u2(p20 p21 p22 . . . p2,n−k−1)
. . . + uk−1(pk−1,0 pk−1,1 . . . pk−1,2 pk−1,n−k−1) = 0
vj + u0p0j + u1p1j . . . + uk−1pk−1j = 0 for 0 ≤ j < n − k
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Introduction to Linear Block Codes Parity-Check Matrix

Consider the generator matrix of a (7,4) linear code given in example
3.1

The corresponding parity-check matrix is

H =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


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Introduction to Linear Block Codes Parity-Check Matrix

Ezample:

Take any code given in table.

v .HT = 0 is

(1 1 0 1 0 0 0).



1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1


= 1(1 0 0)+1(0 1 0)+1(1 1 0)=(0 0 0)
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Introduction to Linear Block Codes Parity-Check Matrix

Summaries

For any (n, k) linear block code C, there exists a k n matrix G whose
row space given C.

There exist an (n - k) n matrix H such that an n-tuple v is a code
word in C if and only if v · HT = 0

If G is of the form given by (4), then H may take formgiven by (7),
and vice versa
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Introduction to Linear Block Codes Encoding Circuit

Based on the equation of (3.6a) and (3.6b), the encoding circuit for
an (n, k) linear systematic code can be implemented easily.

The encoding circuit is shown in Fig. 3.2

The complexity of the encoding circuit is linear proportional to the
block length.

The encoding circuit for the (7,4) code given in Table 3.1 is shown in
Fig 3.3

Denotes a shift register stage (flip-flop)

+

Ui

Pij
Denotes a connection if Pij=1 and
no connection if Pij=0

Denotes a modulo-2 adder
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Introduction to Linear Block Codes Encoding Circuit

vn−k+i = ui for 0 ≤ i < k
vj = u0p0j + u1p1j + . . . ,+uk−1pk−1,j for 0 ≤ j < n − k

P00 P10
Pk-10

+
v0

P01 P11
Pk-1,1

+
v1

P0,n-k-1

+
Vn-k

P1,n-k-1

Pk-1,n-k-1

To Channel

u0 u1 Uk-1
u0 u1 Uk-1u0 u1 Uk-1

U0 Uk-1U2U1

Input U Message register

To Channel

Parity register

Figure: The encoding circuit for a liner system (n,k) code
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Introduction to Linear Block Codes Encoding Circuit

The encoding circuit for a liner system (n,k) code
v6 = u3, v5 = u2, v4 = u2, v3 = u0,v2 = u1 + u2 + u3, v1 = u0 + u1 + u2,
v0 = u0 + u2 + u3

+

U0 U2U1

Input U
Message register

To Channel
++

U3

Parity register

vo v1 v2

Figure: The encoding circuit for the (7,4)systematic code

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 25 / 83



Syndrome and Error Detection Syndrome and Error Detection

Syndrome and Error Detection
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Syndrome and Error Detection Syndrome and Error Detection

v = (v0, v1, . . . , vn−1) be a codeword transmitted over a noisy
channel.

Let r = (r0, r1, . . . , rn−1) be the received vector.

e = r + v = (e0, e1, . . . , en−1) (9)

ei = 1 for ri 6= vi or ei = 0 for ri = vi
The n-tuple e is called the error vector (or error pattern)
Received vector r is the vector sum of transmitted codeword and the
error vector

r = v + e

+v

e

r=v+e

The decoder first determine whether r contains errors.
If errors are detected, correct errors (FEC) or Request for a
retransmission of v (ARQ).
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The n-tuple e is called the error vector (or error pattern)

Received vector r is the vector sum of transmitted codeword and the
error vector

r = v + e

+v

e

r=v+e

The decoder first determine whether r contains errors.
If errors are detected, correct errors (FEC) or Request for a
retransmission of v (ARQ).
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Syndrome and Error Detection Syndrome and Error Detection

When r is received, the decoder computes the following (n-k)-tuple:

s = r · HT = (s0, s1, . . . , sn−k−1) (10)

which is called the syndrome of r

s = 0 if and only if r is a code word and receiver accepts r as the
transmitted code word

s 6= 0 if and only if r is not a code word and the presence of errors has
been detected

When the error pattern e is identical to a nonzero code word (i.e., r
contain errors but s = r · HT = 0), error patterns of this kind are
called undetectable error patterns

Since there are 2k−1 nonzero code words, there are 2k−1 undetectable
error patterns
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Syndrome and Error Detection Syndrome and Error Detection

S = (r0, r1, . . . , rn−1).HT =



1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1

p00 p01 p02 . . . p0,n−k−1
p10 p11 p12 . . . p1,n−k−1

...
pk−1,0 pk−1,1 pk−1,2 . . . pk−1,n−k−1


Based on Equation 10, the syndrome digits are as follows:

s0 = r0 + rn−kp00 + rn−k+1p10 + . . . + rn−1pk−1,0
s1 = r1 + rn−kp01 + rn−k+1p11 + . . . + rn−1pk−1,1

sn−k−1 = rn−k−1 + rn−kp0,n−k−1 . . . + rn−1pk−1,n−k−1 (11)
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Syndrome and Error Detection Syndrome and Error Detection

The syndrome s is the vector sum of the received parity digits

(r0, r1, . . . , rn−k−1) and the parity-check digits recomputed from the
received information digits (rn−k , rn−k+1 . . . , rn1)

A general syndrome circuit is shown in Fig. 5

P00 P10
Pk-1,0

+

s0

P01 P11
Pk-1,1

+

s1

P0,n-k-1

+

sn-k-1

P1,n-k-1

Pk-1,n-k-1

r0 rn-1r2r1
r

rn-k rn-k+j rn-1r1rn-k rn-k+j rn-1r0
rn-k-1

rn-k rn-k+1
rn-1

Figure: Syndrome circuit for a liner system (n,k) code
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Syndrome and Error Detection Syndrome and Error Detection

Example 3.4

The parity-check matrix is given in example 3.3

Let r = (r0, r1, r2, r3, r4, r5, r6) be the received vector

The syndrome is given by

S = (s0, s1, s2) = (r0, r1, r2, r3, r4, r5, r6) ·



1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1


s0 = r0 + r3 + r5 + r6

s1 = r1 + r3 + r4 + r5

s2 = r2 + r4 + r5 + r6
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Syndrome and Error Detection Syndrome and Error Detection

s0 = r0 + r3 + r5 + r6

s1 = r1 + r3 + r4 + r5

s2 = r2 + r4 + r5 + r6

The syndrome circuit for this code is shown below

+

s0 +

s1

+

s3

r0 r2r1 r6r5r4r3

r

Figure: Syndrome circuit for a liner system (n,k) code

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 32 / 83



Syndrome and Error Detection Syndrome and Error Detection

Since r is the vector sum of v and e, it follows from (3.10) that

s = r .HT = (v + e).HT = v .HT + e.HT

v .HT = 0

The relation between the syndrome and the error pattern is:

s = e.HT (12)

If the parity-check matrix H is expressed in the systematic form as
given by (3.7), multiplying out e.HT yield the following linear
relationship between the syndrome digits and the error digits:

s0 = e0 + en−kp00 + en−k+1p10 + . . . + en−1pk−1,0
s1 = e1 + en−kp01 + en−k+1p11 + . . . + en−1pk−1,1

sn−k−1 = en−k−1 + en−kp0,n−k−1 . . . + en−1pk−1,n−k−1 (13)
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Syndrome and Error Detection Syndrome and Error Detection

The syndrome digits are linear combinations of the error digits

The syndrome digits can be used for error correction

Because the n-k linear equations of (3.13) do not have a unique
solution but have 2k solutions

There are 2k error pattern that result in the same syndrome, and the
true error pattern e is one of them

The decoder has to determine the true error vector from a set of 2k

candidates

To minimize the probability of a decoding error, the most probable
error pattern that satisfies the equations of (3.13) is chosen as the
true error vector

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 34 / 83



Syndrome and Error Detection Syndrome and Error Detection

The syndrome digits are linear combinations of the error digits

The syndrome digits can be used for error correction

Because the n-k linear equations of (3.13) do not have a unique
solution but have 2k solutions

There are 2k error pattern that result in the same syndrome, and the
true error pattern e is one of them

The decoder has to determine the true error vector from a set of 2k

candidates

To minimize the probability of a decoding error, the most probable
error pattern that satisfies the equations of (3.13) is chosen as the
true error vector

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 34 / 83



Syndrome and Error Detection Syndrome and Error Detection

The syndrome digits are linear combinations of the error digits

The syndrome digits can be used for error correction

Because the n-k linear equations of (3.13) do not have a unique
solution but have 2k solutions

There are 2k error pattern that result in the same syndrome, and the
true error pattern e is one of them

The decoder has to determine the true error vector from a set of 2k

candidates

To minimize the probability of a decoding error, the most probable
error pattern that satisfies the equations of (3.13) is chosen as the
true error vector

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 34 / 83



Syndrome and Error Detection Syndrome and Error Detection

The syndrome digits are linear combinations of the error digits

The syndrome digits can be used for error correction

Because the n-k linear equations of (3.13) do not have a unique
solution but have 2k solutions

There are 2k error pattern that result in the same syndrome, and the
true error pattern e is one of them

The decoder has to determine the true error vector from a set of 2k

candidates

To minimize the probability of a decoding error, the most probable
error pattern that satisfies the equations of (3.13) is chosen as the
true error vector

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 34 / 83



Syndrome and Error Detection Syndrome and Error Detection

The syndrome digits are linear combinations of the error digits

The syndrome digits can be used for error correction

Because the n-k linear equations of (3.13) do not have a unique
solution but have 2k solutions

There are 2k error pattern that result in the same syndrome, and the
true error pattern e is one of them

The decoder has to determine the true error vector from a set of 2k

candidates

To minimize the probability of a decoding error, the most probable
error pattern that satisfies the equations of (3.13) is chosen as the
true error vector

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 34 / 83



Syndrome and Error Detection Syndrome and Error Detection

The syndrome digits are linear combinations of the error digits

The syndrome digits can be used for error correction

Because the n-k linear equations of (3.13) do not have a unique
solution but have 2k solutions

There are 2k error pattern that result in the same syndrome, and the
true error pattern e is one of them

The decoder has to determine the true error vector from a set of 2k

candidates

To minimize the probability of a decoding error, the most probable
error pattern that satisfies the equations of (3.13) is chosen as the
true error vector

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 34 / 83



Syndrome and Error Detection Syndrome and Error Detection

Consider the code C(5,2) with the parity check matrix

H =

 1 0 0 1 1
0 1 0 1 1
0 0 1 1 0


Let v=(0 0 1 1 1) be the transmitted codeword over BSC and
r=(1 0 1 1 1) be received vector.

The problem is to find the digits of an error pattern
e = (e0, e1, e2, e3, e4) Compute the syndrome S = (s0, s1, s2) of
r=(1 0 1 1 1)

s = r .HT = (1 0 1 1 1)


1 0 0
0 1 0
0 0 1
1 1 1
1 1 0

 = (1 0 0)
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The problem is to find the digits of an error pattern
e = (e0, e1, e2, e3, e4) Compute the syndrome S = (s0, s1, s2) of
r=(1 0 1 1 1)

s = r .HT = (1 0 1 1 1)


1 0 0
0 1 0
0 0 1
1 1 1
1 1 0

 = (1 0 0)
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Syndrome and Error Detection Syndrome and Error Detection

Solve the system for e = (e0, e1, e2, e3, e4) with s=(1 0 0) as

H.eT = sT ⇒

 1 0 0 1 1
0 1 0 1 1
0 0 1 1 0




e0
e1
e2
e3
e4

 =

 1
0
0



e0 + e3 + e4 = 1

e1 + e3 + e4 = 0

e2 + e3 = 0

There are 22 = 4 error patterns that satisfy the above system
depending on e3e4=00 or 01 or 10 or 11, they are (1 0 0 0 0),
(0 1 0 0 1), (0 1 1 1 0),(1 0 1 1 1)

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 36 / 83



Syndrome and Error Detection Syndrome and Error Detection

Solve the system for e = (e0, e1, e2, e3, e4) with s=(1 0 0) as

H.eT = sT ⇒

 1 0 0 1 1
0 1 0 1 1
0 0 1 1 0




e0
e1
e2
e3
e4

 =

 1
0
0



e0 + e3 + e4 = 1

e1 + e3 + e4 = 0

e2 + e3 = 0

There are 22 = 4 error patterns that satisfy the above system
depending on e3e4=00 or 01 or 10 or 11, they are (1 0 0 0 0),
(0 1 0 0 1), (0 1 1 1 0),(1 0 1 1 1)

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 36 / 83



Syndrome and Error Detection Syndrome and Error Detection

Solve the system for e = (e0, e1, e2, e3, e4) with s=(1 0 0) as

H.eT = sT ⇒

 1 0 0 1 1
0 1 0 1 1
0 0 1 1 0




e0
e1
e2
e3
e4

 =

 1
0
0



e0 + e3 + e4 = 1

e1 + e3 + e4 = 0

e2 + e3 = 0

There are 22 = 4 error patterns that satisfy the above system
depending on e3e4=00 or 01 or 10 or 11, they are (1 0 0 0 0),
(0 1 0 0 1), (0 1 1 1 0),(1 0 1 1 1)

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 36 / 83



Syndrome and Error Detection Syndrome and Error Detection

Solve the system for e = (e0, e1, e2, e3, e4) with s=(1 0 0) as

H.eT = sT ⇒

 1 0 0 1 1
0 1 0 1 1
0 0 1 1 0




e0
e1
e2
e3
e4

 =

 1
0
0



e0 + e3 + e4 = 1

e1 + e3 + e4 = 0

e2 + e3 = 0

There are 22 = 4 error patterns that satisfy the above system
depending on e3e4=00 or 01 or 10 or 11, they are (1 0 0 0 0),
(0 1 0 0 1), (0 1 1 1 0),(1 0 1 1 1)

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 36 / 83



Syndrome and Error Detection Syndrome and Error Detection

Solve the system for e = (e0, e1, e2, e3, e4) with s=(1 0 0) as

H.eT = sT ⇒

 1 0 0 1 1
0 1 0 1 1
0 0 1 1 0




e0
e1
e2
e3
e4

 =

 1
0
0



e0 + e3 + e4 = 1

e1 + e3 + e4 = 0

e2 + e3 = 0

There are 22 = 4 error patterns that satisfy the above system
depending on e3e4=00 or 01 or 10 or 11, they are (1 0 0 0 0),
(0 1 0 0 1), (0 1 1 1 0),(1 0 1 1 1)

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 36 / 83



Syndrome and Error Detection Syndrome and Error Detection

Now, since the channel is Binary Symmetric Channel (BSC), Then
the most probable error pattern that satisfies the system above is
e=(1 0 0 0 0) which has the smallest number of nonzero digits.
The receiver decodes the received word r=(1 0 1 1 1) into the
following codeword v*=r+e=(1 0 1 1 1)+(1 0 0 0 0)=(0 0 1 1 1)

We see that the receiver has made a correct decoding.
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Syndrome and Error Detection Syndrome and Error Detection

We consider the (7,4) code whose parity-check matrix is given in
example 3.3

Let v = (1 0 0 1 0 1 1) be the transmitted code word

Let r = (1 0 0 1 0 0 1) be the received vector

The receiver computes the syndrome

s = r .HT = (1 1 1)

The receiver attempts to determine the true error
vectore = (e0, e1, e2, e3, e4, e5, e6), which yields the syndrome above

1 = e0 + e3 + e5 + e6

1 = e1 + e3 + e4 + e5

1 = e2 + e4 + e5 + e6

There are 24 = 16 error patterns that satisfy the equations above.
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Syndrome and Error Detection Syndrome and Error Detection

(0000010),(1101010),(0110110),(1011110),
(1110000),(0011000),(1000100),(0101100),
(1010011),(0111011),(1100111),(0001111),
(0100001),(1001001),(0010101),(1111101)

The error vector e = (0 0 0 0 0 1 0) has the smallest number of
nonzero components

If the channel is a Binary Symmetric Channel (BSC), e = (0 0 0 0 0 1
0) is the most probable error vector that satisfies the equation above

Taking e = (0 0 0 0 0 1 0) as the true error vector, the receiver
decodes the received vector r = (1 0 0 1 0 0 1) into the following
code word

v* = r + e = (1 0 0 1 0 0 1) + (0 0 0 0 0 1 0)= (1 0 0 1 0 1 1)

where v* is the actual transmitted code word
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The Minimum Distance of a Block Code
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The Minimum Distance of a Block Code The Minimum Distance of a Block Code

Let v = (v0, v1, . . . , vn−1) be a binary n-tuple, the Hamming weight
(or simply weight) of v, denoted by w(v), is defined as the number of
nonzero components of v.

For example, the Hamming weight of v = (1 0 0 0 1 1 0) is 3.

Let v and w be two n-tuple, the Hamming distance between v and w,
denoted d(v ,w), is defined as the number of places where they differ.

For example, the Hamming distance between v = (1 0 0 1 0 1 1) and
w = (0 1 0 0 0 1 1) is 3

The Hamming distance is a metric function that satisfied the triangle
inequality.

d(v ,w) + d(w , x) ≥ d(v , x) (3.14) (14)
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The Minimum Distance of a Block Code The Minimum Distance of a Block Code

From the definition of Hamming distance and the definition of
module-2 addition that the Hamming distance between two n-tuple, v
and w, is equal to the Hamming weight of the sum of v and w, that is.

d(v ,w) = w(v + w) (3.15) (15)

For example, the Hamming distance between v = (1 0 0 1 0 1 1) and
w = (1 1 1 0 0 1 0) is 4 and the weight of v + w = (0 1 1 1 0 0 1) is
also 4.

Given, a block code C, the minimum distance of C, denoted dmin, is
defined as

dmin = min{d(v ,w) : v ,w ∈ C , v 6= w} (3.16) (16)
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dmin = min{d(v ,w) : v ,w ∈ C , v 6= w} (3.16) (16)
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The Minimum Distance of a Block Code The Minimum Distance of a Block Code

If C is a linear block, the sum of two vectors is also a code vector.

From (3.15) that the Hamming distance between two code vectors in
C is equal to the Hamming weight of a third code vector in C.

dmin = min{w(v + w) : v ,w ∈ C , v 6= w}
= min{w(x) : x ∈ C , x 6= 0} (3.17)

≡ wmin

The parameter wmin ≡ {w(x) : x ∈ C , x 6= 0} is called the minimum
weight of the linear code C.

Theorem 3.1

The minimum distance of a linear block code is equal to the
minimum weight of its nonzero code words.

The (7,4) code has minimum weight of 3.
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Theorem 3.2

Let C be an (n, k) linear code with parity-check matrix H. For each
code vector of Hamming weight l, there exist l columns of H such
that the vector sum of these l columns is equal to the zero vector.
Conversely, if there exist l columns of H whose vector sum is the zeros
vector, there exists a code vector of Hamming weight l in C.
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The Minimum Distance of a Block Code The Minimum Distance of a Block Code

Proof

Let the parity-check matrix be

H = [h0, h1, . . . , hn−1]

where hi represents the ith column of H

Let v = (v0, v1, . . . , vn−1) be a code vector of weight l and v has l
nonzero components.

Letvi1, vi2, . . . , vil be the l nonzero components of v,

where 0 ≤ i1 < i2 < . . . < il ≤ n − 1, then vi1 = vi2 = . . . = vil = 1

since v is code vector, we must have

0 = v .HT

= v0h0 + v1h1 + . . . + vn−1hn−1

= vi1hi1 + vi2hi2 + . . . + vilhil

= hi1 + hi2 + . . . + hil
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The Minimum Distance of a Block Code The Minimum Distance of a Block Code

Proof

Suppose that hi1, hi2, . . . , hil are l columns of H such that

hi1 + hi2 + . . . + hil = 0 (3.18) (17)

Let x = (x1, x2, . . . , xn − 1) whose nonzero components are
xi1, xi2, xil

x .HT = x0h0 + x1h1 + . . . + xn−1hn−1

= xi1hi1 + xi2hi2 + . . . + xilhil

= hi1 + hi2 + . . . + hil

It following from (3.18) that x .HT = 0, x is code vector of weight l in
C
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The Minimum Distance of a Block Code The Minimum Distance of a Block Code

Corollary 3.2.1

Let C be a linear block code with parity-check matrix H. If no d-1 or
fewer columns of H add to 0, the code has minimum weight at least d.

Corollary 3.2.2

The minimum weight of C is equal to the smallest number of columns
of H that sum to 0.
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Error-Detecting and Error-Correcting Capabilities

of a Block Code

Manjunatha. P (JNNCE) Linear Block Codes September 21, 2013 48 / 83



Error-Detecting and Error-Correcting Capabilities of a Block Code Error-Detecting and Error-Correcting Capabilities of a Block Code

If the minimum distance of a block code C is dmin, any two distinct
code vector of C differ in at least dmin places.

A block code with minimum distance dmin is capable of detecting all
the error pattern of dmin- 1 or fewer errors.

However, it cannot detect all the error pattern of dmin errors because
there exists at least one pair of code vectors that differ in dmin places
and there is an error pattern of dmin errors that will carry one into the
other.

The random-error-detecting capability of a block code with minimum
distance dmin is dmin-1.
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Error-Detecting and Error-Correcting Capabilities of a Block Code Error-Detecting and Error-Correcting Capabilities of a Block Code

An (n, k) linear code is capable of detecting 2n − 2k error patterns of
length n.

Among the 2n − 1 possible nonzero error patterns, there are 2k − 1
error patterns that are identical to the 2k − 1 nonzero code words.

If any of these 2k − 1 error patterns occurs, it alters the transmitted
code word v into another code word w, thus w will be received and its
syndrome is zero.

There are 2k − 1 undetectable error patterns.

If an error pattern is not identical to a nonzero code word, the
received vector r will not be a code word and the syndrome will not
be zero.

These 2n − 2k error patterns are detectable error patterns.
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Error-Detecting and Error-Correcting Capabilities of a Block Code Error-Detecting and Error-Correcting Capabilities of a Block Code

Let Ai be the number of code vectors of weight i in C, the numbers
A0,A1, ...,An are called the weight distribution of C.

Let Pu(E) denote the probability of an undetected error.

Since an undetected error occurs only when the error pattern is
identical to a nonzero code vector of C .

Pu(E ) =
n∑

i=1

Aip
i (1− p)n−i (18)

where p is the transition probability of the BSC.

If the minimum distance of C is dmin, then A1 to Admin − 1 are zero.
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Consider the (7,4) code given in table. The weight distribution is:
A0 = 1,A1 = A2 = 0,A3 = A4 = 7,A5 = A6 = 0,and A7 = 1

The probability of an undetected error

Pu(E ) = 7p3(1− p4) + 7p4(1− p3) + p7

If p = 10−2 then Pu(E ) = 7x10−6 this means, if 1 million codewords
are transmitted over a BSC with p = 10−2 on average seven erroneous
codewords pass through the decoder without being detected.
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Consider a block code C with minimum distance dmin is used for random error correction and dmin is either odd or even.

Let t be a positive integer such that:
2t + 1 ≤ dmin ≤ 2t + 2 (19)

Fact 1:

The code C is capable of correcting all the error patterns of t or fewer errors.
Proof:

Let v and r be the transmitted code vector and the received vector, respectively and w be any other code vector in C.

d(v, r) + d(w, r) ≥ d(v,w) (20)

Suppose that an t
′
errors occurs during the transmission of v. Then d(v, r) = t

′
.

Since v and w are code vectors in C, we have

d(v,w) ≥ dmin ≥ 2t + 1. (21)

Combining equation 20 and equation 21
d(v, r) + d(w, r) ≥ 2t + 1

and d(v, r) = t
′

d(w, r) ≥ 2t + 1− t
′

if t
′
≤ t ⇒ d(w, r) > t

The inequality above says that if an error pattern of t or fewer errors occurs, the received vector r is closer (in Hamming
distance) to the transmitted code vector v than to any other code vector w in C.

For a BSC, this means that the conditional probability P(r|v) is greater than the conditional probability P(r|w) for
w 6= v .
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Fact 2:

The code is not capable of correcting all the error patterns of l errors
with l > t, for there is at least one case where an error pattern of l
errors results in a received vector which is closer to an incorrect code
vector than to the actual transmitted code vector.

Proof:

Let v and w be two code vectors in C such that d(v ,w) = dmin.

Let e1 and e2 be two error patterns that satisfy the following
conditions:

1 e1 + e2 = v + w
2 e1 and e2 do not have nonzero components in common places.

We have

w(e1) + w(e2) = w(v + w) = d(v ,w) = dmin.(3.23) (22)
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We have

w(e1) + w(e2) = w(v + w) = d(v ,w) = dmin.(3.23) (22)
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Suppose that v is transmitted and is corrupted by the error pattern
e1, then the received vector is

r = v + e1

The Hamming distance between v and r is

d(v , r) = w(v + r) = w(e1).(3.24) (23)

The Hamming distance between w and r is

d(w , r) = w(w + r) = w(w + v + e1) = w(e2)(3.25) (24)

Now, suppose that the error pattern e1 contains more than t errors
[i.e. w(e1) ≥ t + 1].

Since 2t + 1 ≤ dmin2t + 2, it follows from (3.23) that

w(e2) = dmin − w(e1) ≤ (2t + 2)− (t + 1) = t + 1
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Combining (3.24) and (3.25) and using the fact that w(e1) ≥ t + 1
and w(e2) ≤ t + 1, we have

d(v , r) ≥ d(w , r)

This inequality say that there exists an error pattern of l(l > t) errors
which results in a received vector that is closer to an incorrect code
vector than to the transmitted code vector.

Based on the maximum likelihood decoding scheme, an incorrect
decoding would be committed.
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Error-Detecting and Error-Correcting Capabilities of a Block Code Error-Detecting and Error-Correcting Capabilities of a Block Code

A block code with minimum distance dmin guarantees correcting all
the error patterns of t = [(dmin − 1)/2] or fewer errors, where
[(dmin− 1)/2] denotes the largest integer no greater than (dmin− 1)/2

The parameter t = [(dmin − 1)/2] is called the random-error
correcting capability of the code

The code is referred to as a t-error-correcting code.

A block code with random-error-correcting capability t is usually
capable of correcting many error patterns of t + 1 or more errors.

For a t-error-correcting (n, k) linear code, it is capable of correcting a
total 2n−k error patterns.
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Let V1,V2,V3, . . . ,V2k be the code vector of C i.e
C = {V1,V2, , . . . ,V2k}. Each code vector i.e for example
V1 = (v0, v1, . . . , vn−1)

Any decoding scheme used at the receiver is a rule to partition the 2n

possible received vectors into 2k disjoint subsets D1,D2, . . . ,D2k such
that the code vector vi is contained in the subset Di for 1 ≤ i ≤ 2k .

Each subset Di is one-to-one correspondence to a code vector vi .

If the received vector r is found in the subset Di , r is decoded into vi .

Correct decoding is made if and only if the received vector r is in the
subset Di that corresponds to the actual code vector transmitted.
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A method to partition the 2n possible received vectors into 2k disjoint
subsets such that each subset contains one and only one code vector
is described here.
Step 1.

First, the 2k code vectors of C are placed in a row with the all-zero
code vector v1 = (0, 0, . . . , 0) as the first (leftmost) element.
D1, D2, . . . , Di , D2k
v1 = (00...0) v2, . . . , vi , v2k
Step 2.

From the remaining 2n − 2k n-tuple, an n-tuple e2 of minimum weight
is chosen and is placed under the zero vector v1.

A second row is formed by adding e2 to each code vector vi in the
first row and placing the sum e2 + vi under vi
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Step 3.

An unused n-tuple e3 is chosen from the remaining n-tuples and is
placed under e2.

Then a third row is formed by adding e3 to each code vector vi in the
first row and placing e3 + vi under vi .

Continue this process until all the n-tuples are used.

Then we have an array of rows and columns as shown in Fig 3.6

This array is called a standard array of the given linear code C

v1 = 0 v2 . . . vi . . . v2k
e2 e2 + v2 . . . e2 + vi . . . e2 + v2k
e3 e3 + v2 . . . e3 + vi . . . e3 + v2k
...
el el + v2 . . . el + vi . . . el + v2k
...

en−k2 en−k2 + v2 . . . en−k2 + vi . . . en−k2 + v2k
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Theorem 3.3: No two n-tuples in the same row of a standard array are
identical. Every n-tuple appears in one and only one row. Proof:

The first part of the theorem follows from the fact that all the code
vectors of C are distinct

Suppose that two n-tuples in the l th rows are identical, say
el + vi = el + vj with i 6= j

This means that vi = vj , which is impossible, therefore no two
n-tuples in the same row are identical
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Proof

It follows from the construction rule of the standard array that every
n-tuple appears at least once

Suppose that an n-tuple appears in both lth row and the mth row
with l < m

Then this n-tuple must be equal to el + vi for some i and equal to
em + vj for some j

As a result, el + vi = em + vj

From this equality we obtain em = el + (vi + vj)

Since vi and vj are code vectors in C, vi + v is also a code vector in
C, say vs

This implies that the n-tuple em is in the lth row of the array, which
contradicts the construction rule of the array that em, the first
element of the mth row, should be unused in any previous row

No n-tuple can appear in more than one row of the array
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From Theorem 3.3 we see that there are 2n/2k = 2n−k disjoint rows
in the standard array, and each row consists of 2k distinct elements

The 2n−k rows are called the cosets of the code C

The first n-tuple ej of each coset is called a coset leader

Any element in a coset can be used as its coset leader
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Consider the (6, 3) linear code generated by the following matrix:

G =

 0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1


Message is of

u0 u1 u2
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

The coded message is of U.G =
(000000, 011100,101010, 110001, 110110, 101101, 011011, 000111)
The standard array of this code is shown in Table.
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The coded message is of U.G =
(000000, 011100,101010, 110001, 110110, 101101, 011011, 000111) The
standard array of this code is shown in Table.

Coset
leader
000000 011100 101010 110001 110110 101101 011011 000111
100000 111100 001010 010001 010110 001101 111011 100111
010000 001100 111010 100001 100110 111101 001011 010111
001000 010100 100010 111001 111110 100101 010011 001111
000100 011000 101110 110101 110010 101001 011111 000011
000010 011110 101000 110011 110100 101111 011001 000101
000001 011101 101011 110000 110111 101100 011010 000110
100100 111000 001110 010101 010010 001001 111111 100011
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Standard Array Decoding
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Consider (011100) is the transmitted codeword and the received word
is (001100) which lies in 2nd column whose coset leader e=(010000).
So e is correctable error pattern. v=r+e=
(001100)+(010000)=(011100).

Consider (011100) is the transmitted codeword and the received word
is (010100) which lies in 2nd column whose coset leader e=(001000).
So e is correctable error pattern. v=r+e=
(010100)+(001000)=(011100).

Consider (011100) is the transmitted codeword and the received word
is (001010) which lies in 2nd column whose coset leader e=(100000).
v=r+e= (001010)+(100000)=(101010), in which there are 3 errors
ocuur in the received vector that is equal to dmin, hence it is
undetectable.

Again consider (011100) is the transmitted codeword and the received
word is (101100) and for this error pattern there is no coset leader in
the standard array, so e is uncorrectable error pattern.
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A standard array of an (n, k) linear code C consists of 2k disjoint
columns

Let Dj denote the jth column of the standard array, then

Dj = {vj , e2 + vj , e3 + vj , . . . , e2n−k + vj} (3.27)

vj is a code vector of C and e2, e3, . . . e2n−k are the coset leaders

The 2k disjoint columns D1,D2, . . . ,D2k can be used for decoding the
code C.

Suppose that the code vector vj is transmitted over a noisy channel,
from (3.27) we see that the received vector r is in Dj if the error
pattern caused by the channel is a coset leader

If the error pattern caused by the channel is not a coset leader, an
erroneous decoding will result
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The decoding is correct if and only if the error pattern caused by the
channel is a coset leader

The 2n−k coset leaders (including the zero vector 0) are called the
correctable error patterns.
Theorem 3.4 Every (n, k) linear block code is capable of correcting
2n−k error pattern.

To minimize the probability of a decoding error, the error patterns
that are most likely to occur for a given channel should be chosen as
the coset leaders

When a standard array is formed, each coset leader should be chosen
to be a vector of least weight from the remaining available vectors
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Syndrome Decoding
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The syndrome of an n-tuple is an (n-k)-tuple and there are 2n−k

distinct (n-k)-tuples.

From theorem 3.6 that there is a one-to-one correspondence between
a coset and an (nk)-tuple syndrome

Using this one-to-one correspondence relationship, we can form a
decoding table, which is much simpler to use than a standard array

The table consists of 2n−k coset leaders (the correctable error
pattern) and their corresponding syndromes

This table is either stored or wired in the receiver
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The decoding of a received vector consists of three steps:
Step 1.

Compute the syndrome S of the received word r,

S = r .HT = HT .r

Step 2.

Locate the coset leader el whose syndrome is equal to r .HT , then el
is assumed to be the error pattern caused by the channel.
Step 3.

Decode the received vector r into the code vector v. i.e., v = r + el

The decoding scheme described above is called the syndrome
decoding or table-lookup decoding
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Example 3.8

Consider the (7, 4) linear code given in Table 3.1, the parity-check
matrix is given in example 3.3

The code has 23 = 8 cosets.

There are eight correctable error patterns (including the all-zero
vector)

Since the minimum distance of the code is 3, it is capable of
correcting all the error patterns of weight 1 or 0

All the 7-tuples of weight 1 or 0 can be used as coset leaders.

The number of correctable error pattern guaranteed by the minimum
distance is equal to the total number of correctable error patterns.
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Table: Decoding table for the (7,4) linear code.

Syndrome Coset Leader
(100) (1000000)
(010) (0100000)
(001) (0010000)
(110) (0001000)
(011) (0000100)
(111) (0000010)
(101) (0000001)
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Suppose that the code vector v = (1 0 0 1 0 1 1) is transmitted and r
= (1 0 0 1 1 1 1) is received code vector.

For decoding r, we compute the syndrome of r.

S = (1 0 0 1 1 1 1)



1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1


=(0 1 1)
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From Table 3.2 we find that (0 1 1) is the syndrome of the coset
leader e = (0 0 0 0 1 0 0), then r is decoded into

v∗ = r + e

= (1001111) + (0000100)

= (1001011)

which is the actual code vector transmitted

The decoding is correct since the error pattern caused by the channel
is a coset leader.
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Suppose that v = (0 0 0 0 0 0 0) is transmitted and
r = (1 0 0 0 1 0 0) is received code vector.

We see that two errors have occurred during the transmission of v.

The error pattern is not correctable and will cause a decoding error.

When r is received, the receiver computes the syndrome.

s = r .HT = (111)

From the decoding table we find that the coset leader
e = (0 0 0 0 0 1 0) corresponds to the syndrome s = (1 1 1).
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r is decoded into the code vector.

v∗ = r + e

= (1000100) + (0000010)

= (1000110)

Since v* is not the actual code vector transmitted, a decoding error is
committed.

Using Table 3.2, the code is capable of correcting any single error
over a block of seven digits.

When two or more errors occur, a decoding error will be committed.
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The table-lookup decoding of an (n, k) linear code may be
implemented as follows.

The decoding table is regarded as the truth table of n switch
functions:

e0 = f0(s0, s1, . . . sn−k−1)

e1 = f1(s0, s1, . . . sn−k−1)
...

en−1 = fn−1(s0, s1, . . . sn−k−1)

where s0, s1, . . . , sn−k−1 are the syndrome digits where e0, e1, . . . , en−1 are
the estimated error digits
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+

Received vector buffer register r

Syndrome calculation circuit

Error-pattern circuit
(a combinational logic circuit)

++
rn-1r0

r1

e0 e1 en-1

sn-1

rn-1r1
r0

s0 s1

v1
v0 vn-1

r

Corrected output
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Example 3.9

Consider the (7, 4) code given in Table 3.1. The syndrome circuit for
this code is shown in Fig. 3.5.

The decoding table is given by Table 3.2

From this table we form the truth table (Table 3.3)

The switching expression for the seven error digits are

where ∧ denotes the logic-AND operation

where ′ denotes the logic-COMPLENENT of s

e0 = s0 ∧ s
′
1 ∧ s

′
2 e1 = s

′
0 ∧ s1 ∧ s

′
2 e2 = s

′
0 ∧ s

′
1 ∧ s2

e3 = s0 ∧ s1 ∧ s
′
2 e4 = s

′
0 ∧ s1 ∧ s2 e5 = s0 ∧ s1 ∧ s2

e6 = s0 ∧ s
′
1 ∧ s2
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r0 r5r4r3r2r1 r6

+ ++

Received
Vector

r0 +
e0 r5 +

e5r4 +
e4r3 +

e3r2 +
e1r1 +

e1 r6 +
e6

s1 s2s0

Corrected Vector
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