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Overview Overview

Important Linear Block Codes

1 Hamming Codes

Have minimum distance of 3 and capable of correcting any single error.
Hamming codes can be decoded easily using a table-lookup scheme.

2 Reed Muller codes

A large class of codes for multiple random error correction.
Are simple in construction and rich in structural properties.
Decoding is done using hard or soft decision decoding algorithms.
Soft decision decoding achieve very good error performance with low
decoding complexity.

3 The (24, 12) Golay code

Used for error control in many communication systems.

4 Product codes and Interleaved codes
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Hamming Codes Hamming Codes

These codes and their variations have been widely used for error
control in digital communication and data storage systems.

For any positive integer m ≥ 3, there exists a Hamming code with the
following parameters :

Code length: n = 2m − 1

Number of information symbols: k = 2m −m − 1

Number of parity-check symbols: n − k = m

Error-correcting capability: t = 1(dmin = 3)

The parity-check matrix H of this code consists of all the nonzero
m-tuple as its columns (2m − 1).
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Hamming Codes Hamming Codes

In systematic form, the columns of H are arranged in the following
form :

H = [Im Q]

where Im is an m ×m identity matrix.

The submatrix Q consists of 2m −m − 1 columns which are the
m-tuples of weight 2 or more.

The columns of Q may be arranged in any order without affecting the
distance property and weight distribution of the code.

For example let m=3, the parity check matrix of a Hamming code of
length 7 is in the form.

H =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


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Hamming Codes Hamming Codes

In systematic form, the generator matrix of the code is

G = [QT I2m−m−1]

where QT is the transpose of Q and I2m−m−1 is an
(2m −m − 1)x(2m −m − 1) identity matrix.

Since the columns of H are nonzero and distinct, no two columns add
to zero.

Since H consists of all the nonzero m-tuples as its columns, the vector
sum of any two columns, say hi and hj , must also be a column in H,
say hl

hi + hj + hl = 0

The minimum distance of a Hamming code is exactly 3

The code is capable of correcting all the error patterns with a single
error or of detecting all the error patterns of two or fewer errors.
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Hamming Codes Hamming Codes

If we form the standard array for the Hamming code of length 2m − 1

All the (2m − 1)-tuple of weight 1 can be used as coset leaders.

The number of (2m − 1)-tuples of weight 1 is (2m − 1)

Since n − k = m, the code has 2m cosets

The zero vector 0 and the (2m − 1)-tuples of weight 1 form all the
coset leaders of the standard array

A t-error-correcting code is called a perfect code if its standard array
has all the error patterns of t or fewer errors and no others as coset
leader

Decoding of Hamming codes can be accomplished easily with the
table-lookup scheme
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Hamming Codes Hamming Codes

We may delete any l columns from the parity-check matrix H of a
Hamming code

This deletion results in an m × (2m − l − 1) matrix H
′

Using H’ as a parity-check matrix, we obtain a shortened Hamming
code with the following parameters:

Code length: n = 2m − l − 1

Number of information symbols: k = 2m −m − l − 1

Number of parity-check symbols: n − k = m

Minimum distance: dmin ≥ 3

If we delete columns from H properly, we may obtain a shortened
Hamming code with minimum distance 4
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Hamming Codes Hamming Codes

For example, if we delete from the submatrix Q all the columns of
even weight, we obtain an mx2m−1 matrix.

H
′

= [Im Q
′
]

Q consists of 2m−1 −m columns of odd weight.

Since all columns of H have odd weight, no three columns add to zero.

However, for a column hi of weight 3 in Q
′
, there exists three

columns hj , hl , and hs in Im such that hi + hj + hl + hs = 0.

Thus, the shortened Hamming code with H as a parity-check matrix
has minimum distance exactly 4.

The distance 4 shortened Hamming code can be used for correcting
all error patterns of single error and simultaneously detecting all error
patterns of double errors
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Hamming Codes Hamming Codes

When a single error occurs during the transmission of a code vector,
the resultant syndrome is nonzero and it contains an odd number of
1s (exH

′T corresponds to a column in H)

When double errors occurs, the syndrome is nonzero, but it contains
even number of 1s

Decoding can be accomplished in the following manner :
1 If the syndrome s is zero, we assume that no error occurred
2 If s is nonzero and it contains odd number of 1’s, we assume that a

single error occurred.
3 The error pattern of a single error that corresponds to s is added to the

received vector for error correction
4 If s is nonzero and it contains even number of 1’s, an uncorrectable

error pattern has been detected
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Reed-Muller Codes Reed-Muller Codes

Reed-Muller codes are among the oldest known codes and have found
widespread applications.

They were discovered by Muller and provided with a decoding
algorithm by Reed in 1954.

These codes were initially given as binary codes, but modern
generalizations to q-ary codes exist.

Reed-Muller codes have many interesting properties that are worth
examination; they form an infinite family of codes, and larger
Reed-Muller codes can be constructed from smaller ones.

This particular observation leads us to show that Reed-Muller codes
can be defined recursively.

One of the major advantages of Reed-Muller codes is their relative
simplicity to encode messages and decode received transmissions.
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Reed-Muller Codes Reed-Muller Codes

For any integers m and r with 0 ≤ r ≤ m there exist a binary rth
order RM code, denoted by RM(r,m), with the following parameters

Code length: n = 2m

Dimension: k(r ,m) = 1 +

(
m
1

)
+

(
m
2

)
+ . . .+

(
m
r

)
Minimum distance: dmin = 2m−r

where

(
m
i

)
= m!

i!(m−i)!

Example m=5 and r=2 then n=32, k(2,5)=16 and dmin = 8

There exists a (32, 16) RM code with a distance of 8.

For 1 ≤ i ≤ m let Vi be 2m tuple over GF (2) of the following form:

Vi = (0 . . . 0︸ ︷︷ ︸
2i−1

, 1 . . . 1︸ ︷︷ ︸
2i−1

, 0 . . . 0︸ ︷︷ ︸
2i−1

. . . 1 . . . 1︸ ︷︷ ︸
2i−1

)

which consists of 2m−i+1 alternating all zero and all one 2i−1 tuples.
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(
m
r

)
Minimum distance: dmin = 2m−r

where

(
m
i

)
= m!

i!(m−i)!

Example m=5 and r=2 then n=32, k(2,5)=16 and dmin = 8

There exists a (32, 16) RM code with a distance of 8.

For 1 ≤ i ≤ m let Vi be 2m tuple over GF (2) of the following form:

Vi = (0 . . . 0︸ ︷︷ ︸
2i−1

, 1 . . . 1︸ ︷︷ ︸
2i−1

, 0 . . . 0︸ ︷︷ ︸
2i−1

. . . 1 . . . 1︸ ︷︷ ︸
2i−1

)

which consists of 2m−i+1 alternating all zero and all one 2i−1 tuples.
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Reed-Muller Codes Reed-Muller Codes

Example 1

Consider the code R(1,3) with generator matrix:

Code length: n = 2m = 23 = 8

k(r ,m) = 1 +

(
3
1

)
= 1 + 3.2.1

(2.1).1 = 4

Minimum distance: dmin = 2m−r = 23−1 = 4

GRM(1, 3) =


1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0


Let a = (a0, a1, a2, . . . an−1) b = (b0, b1, b2, . . . bn−1)

a.b = (a0.b0, a1.b1, . . . an−1.bn−1)

where . denotes logic product i.e. ai .bi = 1 if and if only ai = bi = 1
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Reed-Muller Codes Reed-Muller Codes

The rth order RM code, RM(r, m) of length 2m is generated by the
following set of independent vectors:

GRM(r ,m) = (V0,V1,V2, . . .Vm,V1.V2,V1.V3,Vm−1.Vm

= up to products of degree r)

There are

k(r ,m) = 1 +

(
m
1

)
+

(
m
2

)
+ . . .+

(
m
r

)
vectors in GRM(r ,m). Therefore the dimension of the code is k(r ,m)

The vectors in GRM(r ,m) are arranged as rows of a matrix, then the
matrix is a generator matrix of the RM(r ,m) code. Hence GRM(r ,m)
is called as the generator matrix
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Reed-Muller Codes Reed-Muller Codes

Example 2

Consider the code R(2,3) with generator matrix:

Code length: n = 2m = 23 = 8

k(r ,m) = 1 +

(
3
1

)
+

(
3
2

)
= 1 + 3.2.1

(2.1).1 + 3.2.1
(1)2.1 = 7

Minimum distance: dmin = 2m−r = 23−2 = 2

GRM(2, 3) =



V0

V3

V2

V1

V3.V2

V3.V1

V2.V2


=



1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0


V3.V2=(1 1 0 0 0 0 0 0)
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Reed Muller Reed Decoding

Consider an example R(1,3) code with generator matrix:

Code length: n = 2m = 23 = 8

k(r ,m) = 1 +

(
3
1

)
= 1 + 3.2.1

(2.1).1 = 4

GRM =


V0

V1

V2

V3

 =


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


The rows of the matrix are labeled as V0,V1,V2 and V3.

Consider a message m = (a0, a1, a2, a3) to be encoded.
V = m ∗ GRM(1; 3) = V = a0V0 + a1V1 + a2V2 + a3V3.

Written as a vector,
V = (a0, a0 + a1, a0 + a2, a0 + a1 + a2, a0 + a3, a0 + a1 + a3, a0 + a2 +
a3, a0 + a1 + a2 + a3).
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Reed Muller Reed Decoding

Reed Decoding

v = (a0, a0 + a1, a0 + a2, a0 + a1 + a2, a0 + a3, a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3).

If no errors occur, a received vector r = (y0, y1, y2, y3, y4, y5, y6, y7) can be used to solve
for the ai other than a0 in several ways (4 ways for each) namely:
a0 = y0 a0 + a1 = y1 ⇒ y0 + y1 = a1

a0 + a2 = y2 a0 + a1 + a2 = y3 ⇒ y2 + y3 = a1

a0 + a3 = y4 a0 + a1 + a3 = y5 ⇒ y4 + y5 = a1

a0 + a2 + a3 = y6 a0 + a1 + a2 + a3 = y7 ⇒ y6 + y7 = a1

Therefore a1 is
a1 = y0 + y1 = y2 + y3 = y4 + y5 = y6 + y7

Similarly a2 and a3 are determined and are as follows
a2 = y0 + y2 = y1 + y3 = y4 + y6 = y5 + y7

a3 = y0 + y4 = y1 + y5 = y2 + y6 = y3 + y7

If one error has occurred in r, then when all the calculations above are made, 3 of the 4
values will agree for each ai , so the correct value will be obtained by majority decoding.

Finally, a0 can be determined as the majority of the components of r + a1v1 + a2v2 + a3v3
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Reed Muller Reed Decoding

Example

Suppose that the transmitted code is v = 10100101 and received
code as 10101101. Using,

a1 = y0 + y1 = y2 + y3 = y4 + y5 = y6 + y7,
a2 = y0 + y2 = y1 + y3 = y4 + y6 = y5 + y7

a3 = y0 + y4 = y1 + y5 = y2 + y6 = y3 + y7

Calculate a1, a2, and a3 using majority decoding.:
a1 = 1 = 1 = 0 = 1 so a1 = 1
a2 = 0 = 0 = 1 = 0 so a2 = 0
a3 = 0 = 1 = 1 = 1 so a3 = 1

Finally, a0 can be determined as the majority of the components of
r + a1v1 + a2v2 + a3v3

and y0 = a0 y1 = a0 + a1 hence a0 = 1 since 10101101 + 01010101
+ 00001111 = 11110111.

v = a0v0 + a1v1 + a2v2 + a3v3. In this case a2 = 0 Therefore

V = 11111111 + 01010101 + 00001111 = 10100101.
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Reed-Muller Codes Other Constructions of Reed-Muller Codes

Other Constructions of Reed-Muller Codes:

Let A = [aij ] be and mXm matrix and B = [bij ] be an nxn matrix over
GF(2).
The Kronecker product of A and B denoted by A⊗ B is the mnxmn
matrix obtained from A by replacing every entry aij with the matrix
aijB.
If aij = 1 then aijB = B and for aij = 0 then aijB is an nxn zero
matrix.
Generator matrix of 2x2 over Galois field GF(2)is:

G(2,2) =

[
1 1
0 1

]
The two fold Kronecker product of G(2,2) is:

G(22,22)

[
1 1
0 1

]
⊗
[

1 1
0 1

]
=


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1


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The (24, 12) Golay Code The (24, 12) Golay Code

Golay code constructed by M.J.E. Golay in 1949.

Has a minimum distance of 7 and is capable of correcting any
combination of three or fewer random error in the block of 23 digits.

Has abundant and beautiful algebraic structure.

The (23, 12) Golay code can be extended by adding an overall
parity-check bit to each codework.

This extension results in a (24, 12) code with minimum distance of 8.

This code is capable of correcting all errors of there or fewer errors,
and detecting all error patterns of four errors.

It is not a perfect code anymore however, it has many interesting
structural properties.
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The (24, 12) Golay Code The (24, 12) Golay Code

A generator matrix in systematic form for this code is as follows:

G = [P I12]

where I12is the identity matrix of dimension 12 and P is:

P =



1 0 0 0 1 1 1 0 1 1 0 1
0 0 0 1 1 1 0 1 1 0 1 1
0 0 1 1 1 0 1 1 0 1 0 1
0 1 1 1 0 1 1 0 1 0 0 1
1 1 1 0 1 1 0 1 0 0 0 1
1 1 0 1 1 0 1 0 0 0 1 1
1 0 1 1 0 1 0 0 0 1 1 1
0 1 1 0 1 0 0 0 1 1 1 1
1 1 0 1 0 0 0 1 1 1 0 1
1 0 1 0 0 0 1 1 1 0 1 1
0 1 0 0 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0


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The (24, 12) Golay Code The (24, 12) Golay Code

The P matrix has the following properties:

1 It is symmetrical with respect to its diagonal
2 The i th column is the transpose of the i th row
3 P.PT = I12 where PT is the transpose of P
4 The sub matrix obtained by deleting the last row and last column is

formed by cyclically shifting the first row to the left 11 times.
5 It follows from the second property that

PT = P

Consequently the parity check matrix in systematic form for the
(24, 12) extended Golay code is given by

H = [I12 PT ]

H = [I12 P]
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The (24, 12) Golay Code Decoding Algorithm:

Decoding Algorithm:

Denote pi to be the i th row of P, and u(i) to be the 12-tuple in which
only the i th component is nonzero.

The decoding algorithm consists of the following steps:

1 Compute the syndrome s = r • HT .

2 If w(s) ≤ 3, then we set e∗ = (s, 0). And go to step 8.

3 If w(s + pi ) ≤ 2 for some row pi in P, then we set e∗ = (s + pi , u(i)).
And go to step 8.

4 Compute s • P.

5 If w(s • P) = 2 or 3, then we set e∗ = (0; s • P). And go to step 8.

6 If w(s • P + pi ) = 2 for some pi , then we set e∗ = (u(i); sP + pi )

7 Otherwise, with s 6= 0, declare an uncorrectable error pattern.

8 v∗ = r + e∗:
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The (24, 12) Golay Code Decoding Algorithm:

Example:

Suppose the (24,12) Golay code is used error control.

Let r=(1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1) received
sequence.

To decode r, compute S of r

s = r • HT = (111011111100)

Because w(s) > 3, go to step 3. We find that

s + p11 = (111011111100) + (111111111110) = (000100000010)

and s + p11 = 2 So set
e = (s + p11, u

(11)) = (000100000010000000000001)

and decode r into as

v∗ = r + e = (100100110110110000000000)
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Product and Interleaved Codes Product Codes

Product Codes
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Product and Interleaved Codes Product Codes

Let C1 be an (n1, k1) linear code and C2 be an (n2, k2) linear code.
Then an (n1n2, k1k2) linear code is formed such that each codeword is rectangular array of
(n1) columns and (n2) rows in which every row is codeword in C1 and every column is
codeword in C2.
This two dimensional codeword is called direct product of C1 and C2.
The (k1, k2) digits in the right corner of the array are information symbols.
The (k1, k2) digits in the upper right corner of the array are information symbols.
The digits in the upper left corner of the array are computed from the parity check rules
for C1 on rows and the digits in the lower right corner are computed from the parity check
rules for C2 on columns.
The digits in the lower left corner of the array are parity check rules for C2 on columns or
parity check rules for C1 on rows.

Information Digits

n1

Checks
on rows

Checks on columnsChecks
on checks

k2 n2

k1

Figure: Code array for product code
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Product and Interleaved Codes Product Codes

The product code C1XC2 is encoded in two steps.

A message of (k1, k2) information symbols is first arranged as shown in the upper right

corner of Figure 2
1 In the first step each row of the information array is encoded into a codeword in C1.

The encoded results an array of (k2) rows and (n1) columns as shown in the upper
part of the the Figure.

2 In the second step of encoding each of the n1 columns of the array formed at the

first encoding step is encoded into a codeword in C2.
This results in a code array of (n2) rows and (n1) columns as shown in Figure 2.
The code array is also can be formed by first performing the column by column encoding
and then the row encoding.
Transmission can be carried out either column by column or row by row.

Information Digits

n1

Checks
on rows

Checks on columnsChecks
on checks

k2 n2

k1

Figure: Code array for product code
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Product and Interleaved Codes Product Codes

If code C1 has minimum weight d1 and code C2 has minimum weight d2, the minimum
weight of the product code is exactly d1d2.

A minimum weight of the product code is formed by choosing a minimum weight
codeword in C1 and minimum weight codeword in C2 and forming an array in which all
columns corresponding to zeros in the codeword from C1 are zeros and all columns
corresponding to ones in the codeword from C1 are the minimum weight codeword chosen
from C2.
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Product and Interleaved Codes Product Codes

Consider an example u=(1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1)

This can be arranged as 4X4 information array.

The first four information symbols form the first row of the information array the second
four information symbols form the second row and so on.

In the first step of encoding a single (even) parity check symbol is added to each row of
the information array. This results in a 4X5 array.

In the first step of encoding a single (even) parity check symbol is added to each the five
columns of the array. This results in a 5X5 array.

At the receiver a single error occurs at the intersection of two and column.

The erroneous row and column corrected by complementing the received symbol at the
intersection.

Parity failure cannot correct any double error pattern, but it can detect all the double
error pattern

When a double error pattern occurs, there are 3 possible distribution of the two errors: (1)
they are in the same row (2)

1 1 0 1 1
1 0 0 0 1
0 0 1 0 1
1 1 1 0 1
1 0 0 1 0
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Product and Interleaved Codes Interleaved Codes

Interleaved Codes[2]
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Product and Interleaved Codes Interleaved Codes

In data manipulation and transmission, errors may be caused by a
variety of factors including noise corruption, limited channel
bandwidth, and interference between channels and sources.

Bursts (or clusters) of errors are defined as a group of consecutive
error bits in the one-dimensional (1-D) case or connected error bits in
multi-dimensional (M-D) cases.

Several consecutive transmitted error bits in a mobile communication
system caused by a multipath fading channel.

A bursty channel is defined as a channel over which errors tend to
occur in bunches, or “bursts,” as opposed to random patterns
associated with a Bernoulli-distributed process.

The main idea is to mix up the code symbols from different
code-words so that when the code-words are reconstructed at the
receiving end error bursts encountered in the transmission are spread
across multiple codewords.

Consequently, the errors occurred within one code-word may be small
enough to be corrected by using a simple random error correction
code.
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Product and Interleaved Codes Interleaved Codes

Consider a code in which each code-word
contains four code symbols[2].

Suppose there are 16 symbols, which correspond
to four code-words.

That is, code symbols from 1 to 4 form a
code-word, from 5 to 8 another codeword, and so
on.

In block interleaving, first creates a 4X4 2-D
array, called block interleaver as shown in Figure
1.

The 16 code symbols are read into the 2-D array
in a column-by-column (or row-by-row) manner.

The interleaved code symbols are obtained by
writing the code symbols out of the 2-D array in
a row-by-row (or column by-column) fashion.

This process has been depicted in Figure 1 (a),
(b), and (c).

Assume a burst of errors involving four
consecutive symbols as shown in Figure 1 (c)
with shades.

After de-interleaving as shown in Figure 1 (d),
the error burst is effectively spread among four
code-words, resulting in only one code symbol in
error for each of the four code-words

 

Figure: Block Interleaving

[2]
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Product and Interleaved Codes Interleaved Codes

Consider a (n,k) linear block code C, a new (λn, λk) linear code is
constructed by interleaving, that is arranging λ codewords in C into λ
rows of rectangular array and then transmitting the array column by
column.

The resulting code denoted by Cλ is called and interleaved code.

The parameter is referred as interleaving depth.

The interleaving technique is effective for deriving long, powerful
codes for correcting errors that cluster to form bursts.
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Thank You
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