0.1 VTU Question Papers

2020-JULY-6b, For the circuit shown in Figure 1 find i) $i(0+), v(0+), \frac{d i(0+)}{d t}, \frac{d v(0+)}{d t}, i(\infty), v(\infty)$.

Figure 1: Example

Solution:

When the switch is closed at $t=0+$ the capacitor acts as short circuit and inductor acts as open circuit which is as shown in Figure 3.

Figure 2: Example

$$
\begin{aligned}
i(0+) & =0 \\
v(0+) & =0 \\
\frac{d i(0+)}{d t} & =0 \\
\frac{d v(0+)}{d t} & =0
\end{aligned}
$$

When the switch is closed at $t=\infty$ the capacitor acts as open circuit and inductor acts as short circuit which is as shown in Figure ??.

Figure 3: Example

$$
\begin{aligned}
i(\infty) & =\frac{12}{6}=2 A \\
v(\infty) & =12 V
\end{aligned}
$$

2020-Aug JAN-2014) For the circuit shown in Figure 4 switch K is changed from position a to b at $t=0$, steady state condition having been reached before switching. Find the values of $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}} \mathrm{~b}$ at $t=0^{+}$.

Figure 4: Example
Solution:
When switch is at position a and reached steady state, which is as shown in Figure 5(a).

$$
\begin{aligned}
\operatorname{Ri}\left(0^{-}\right) & =V \\
i\left(0^{-}\right) & =\frac{V}{R}=\frac{20}{10}=2 \mathrm{~A}
\end{aligned}
$$

When the switch is at position b , the circuit is as shown in Figure 5 (b)

(a)

(b)

Figure 5: Example

$$
\begin{equation*}
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t=0 \tag{1}
\end{equation*}
$$

At $t=0^{+}$

$$
R i\left(0^{+}\right)+L \frac{d i}{d t}(0+)+\frac{1}{C} \int i\left(0^{+}\right) d t=0
$$

It is given that capacitor is initially uncharged

$$
\begin{aligned}
\left.\frac{1}{C} \int i\left(0^{+}\right) d t=v_{c}\left(0^{+}\right)\right) & =0 \\
R i\left(0^{+}\right)+L \frac{d i}{d t}\left(0^{+}\right) & =0 \\
10 \times 2+1 \frac{d i}{d t}(0+) & =0 \\
\frac{d i}{d t}\left(0^{+}\right) & =-20 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

Differentiating equation 1

$$
R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0
$$

Substituting initial conditions

$$
\begin{gathered}
R \frac{d i}{d t}\left(0^{+}\right)+L \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)+\frac{i\left(0^{+}\right)}{C}=0 \\
10 \times(-20)+1 \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)+\frac{2}{1 \times 10^{-6}}=0 \\
\frac{d^{2} i}{d t^{2}}\left(0^{+}\right)=200-2 \times 10^{6} \\
=-1.9998 \times 10^{6} \mathrm{~A} / \sec ^{2}
\end{gathered}
$$

JULY-2019-CBCS In the circuit shown in Figure 6 switch S is changed from position a to b at $t=0$. Solve for $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$if $R=100 \Omega$, $L=0.1 H$ and $C=0.25 \mu F$ and $\mathrm{V}=100 \mathrm{~V}$. Assume that the capacitor is initially uncharged.

Figure 6: JULY-2019
Solution:
When the switch is at position a at $t=0^{-}$, inductor acts as a short circuit which is as shown in Figure 7.

Figure 7: JULY-2019

$$
\begin{aligned}
R i\left(0^{-}\right) & =V \\
i\left(0^{-}\right) & =\frac{V}{R}=\frac{100}{100}=1 \mathrm{~A}
\end{aligned}
$$

Current through inductor cannot change instantaneously.

$$
i\left(0^{+}\right)=i\left(0^{-}\right)=1 A
$$

It is given that capacitor is initially uncharged.

$$
v_{c}\left(0^{-}\right)=0=v_{c}\left(0^{+}\right) V
$$

When the switch is at position b, and at $t=0^{+}$, the circuit is as shown in Figure 8.

Figure 8: JULY-2019
By KVL around the loop

$$
\begin{equation*}
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t=0 \tag{2}
\end{equation*}
$$

At $t=0^{+}$

$$
R i\left(0^{+}\right)+L \frac{d i}{d t}\left({ }^{0}+\right)+\frac{1}{C} \int i\left(0^{+}\right) d t=0
$$

It is given that capacitor is initially uncharged

$$
\frac{1}{C} \int i\left(0^{+}\right) d t=v_{c}\left(0^{+}\right)=0
$$

$$
\begin{aligned}
\operatorname{Ri}\left(0^{+}\right)+L \frac{d i}{d t}\left(0^{+}\right) & =0 \\
100 \times(1)+L \frac{d i}{d t}\left(0^{+}\right) & =0 \\
L \frac{d i}{d t}(0+) & =-100 \\
\frac{d i}{d t}(0+) & =\frac{-100}{0.1} \\
& =-1000 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

Differentiating equation 2

$$
R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0
$$

Substituting initial conditions

$$
\begin{aligned}
L \frac{d^{2} i}{d t^{2}}\left(0^{+}\right) & =-R \frac{d i}{d t}\left(0^{+}\right)-\frac{i\left(0^{+}\right)}{C} \\
0.1 \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)+ & =-100 \times(-1000)-\frac{1}{0.25 \times 10^{-6}} \\
0.1 \frac{d^{2} i}{d t^{2}}\left(0^{+}\right) & =0.1 \times 10^{6}+4 \times 10^{6} \\
\frac{d^{2} i}{d t^{2}}\left(0^{+}\right) & =39 \times 10^{6} \mathrm{~A} / \sec ^{2}
\end{aligned}
$$

JULY-2018-CBCS The switch in the network shown in Figure 9 is closed at $t=0$. Determine the voltage across the capacitor.

Figure 9: 2018-CBCS-Question Paper Solution:

Before closing the switch at $t=0^{-}$the voltage across the capacitor is

$$
\begin{equation*}
v_{c}\left(0^{-}\right)=i\left(0^{-}\right) R_{2} \tag{3}
\end{equation*}
$$

The switch is closed at $t=0$ at $t=0^{+}$

$$
\begin{aligned}
v_{c}\left(0^{+}\right) & =i\left(0^{+}\right) 10 \\
v_{c}\left(0^{+}\right) & =\frac{10}{10+10} \times 10 \\
& =5 \mathrm{~V}
\end{aligned}
$$

JAN-2017-CBCS In the circuit shown in Figure 10 $\mathrm{V}=10 \vee R=10 \Omega L=1 H$ and $C=10 \mu F$ and $v_{c}(0)=0$, find $i\left(0^{+}\right), \frac{d i}{d t}\left(0^{+}\right)$and $\frac{d^{2} i}{d t^{2}}\left(0^{+}\right)$.

Figure 10: 2017-CBCS-Question Paper Solution:
The switch is closed at $t=0^{+}$the inductor acts as open circuit and capacitor acts as short circuit which is as shown in Figure 11. At $t=0^{-}, i\left(0^{-}\right)=i\left(0^{+}\right)=$ 0

Figure 11: Example

$$
\begin{equation*}
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t=10 \tag{4}
\end{equation*}
$$

At $t=0^{+}$

$$
\begin{aligned}
\operatorname{Ri}\left(0^{+}\right)+L \frac{d i}{d t}\left(0^{+}\right)+\frac{1}{C} \int i\left(0^{+}\right) d t & =V \\
\frac{d i}{d t}(0+) & =\frac{V}{L} \\
& =10 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

Differentiating equation 4

$$
\begin{equation*}
R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0 \tag{5}
\end{equation*}
$$

Substituting initial conditions

$$
\begin{align*}
& R \frac{d i}{d t}\left(0^{+}\right)+L \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)+\frac{i\left(0^{+}\right)}{C}=0 \tag{6}\\
& L \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)=-10 \times 10-\frac{i\left({ }^{0}+\right)}{C} \\
& 1 \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)=100-\frac{0}{C} \\
& \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)=-100 \mathrm{~A} / \mathrm{sec}^{2}
\end{align*}
$$

2020-July-5b-CBCS JAN-2017-6b-CBCS In the network shown in Figure 12 a steady state is reached with the switch K open. At $\mathrm{t}=0$, the switch is closed. For the given element values, determine $v_{a}\left(0^{-}\right)$and $v_{a}\left(0^{+}\right)$

Figure 12: 2017-CBCS-Question Paper Solution:

When switch is opened and steady state reached inductor acts as short circuit which is as shown in Figure 13 (a)

Figure 13: 2017-CBCS-Question Paper

$$
\begin{aligned}
& \frac{V_{a}\left(0^{-}\right)-5}{10}+\frac{V_{a}(0-)-V_{b}\left(0^{-}\right)}{20}=0 \\
& V_{a}\left(0^{-}\right)\left[\frac{1}{10}+\frac{1}{20}\right]=\frac{5}{10} \\
& V_{a}\left(0^{-}\right)=\frac{0.5}{0.15}=3.333 \mathrm{~V} \\
& i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=[0.15]=\frac{V_{a}(0-)}{20}+\frac{5}{10}=0.667 \mathrm{~A}
\end{aligned}
$$

When switch is closed, 10Ω resistor is connected to a point v_{a} steady state reached inductor acts as short circuit which is as shown in Figure 13 (b)

$$
\begin{aligned}
\frac{v_{a}-5}{10}+\frac{v_{a}-v_{b}}{20}+\frac{v_{a}}{10} & =0 \\
v_{a}\left(0^{+}\right)\left[\frac{1}{10}+\frac{1}{10}+\frac{1}{20}\right]-\frac{v_{b}}{20} & =\frac{5}{10} \\
0.25 v_{a}\left(0^{+}\right)-0.05 v_{b}(0+) & =0.5 \\
\frac{v_{b}-v_{a}}{20}+\frac{v_{b}-5}{10}+i_{L} & =0 \\
-0.05 v_{a}\left(0^{+}\right)+0.15 v_{b}(0+) & =0.5-0.667 A \\
-0.05 v_{a}\left(0^{+}\right)+0.15 v_{b}(0+) & =-0.1667
\end{aligned}
$$

JAN-2017-NON-CBCS For the circuit shown in Figure 14 the switch S is changed from position 1 to 2 at $t=0$. The circuit was under steady state before this action. Determine the value v and i at $t=0^{+}$and their first and second derivatives.

Figure 14: Example

Solution:

When switch was at position 1 at $t=0^{-}$, under steady state condition capacitor charges with voltage of $v\left(0^{-}\right)=50=v\left(0^{+}\right)$and after that it acts as an open circuit which is as shown in Figure 15

Figure 15: Example
At $t=0^{-}$, inductor is in open circuit and capacitor is after fully charging it is also in open circuit state. That is

$$
\begin{equation*}
i\left(0^{-}\right)=0 \text { and also } i\left(0^{+}\right)=0 \tag{7}
\end{equation*}
$$

When switch is at position 2, and at $t=0^{+}$the circuit diagram is as shown in Figure 15

Applying KVL for the circuit we have

$$
\begin{aligned}
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t & =0 \\
R i+L \frac{d i}{d t}+v_{c}(t) d t & =0
\end{aligned}
$$

At $t=0^{+}$and $v_{c}\left(0^{+}\right)=50$

$$
\begin{aligned}
\operatorname{Ri}\left(0^{+}\right)+L \frac{d i}{d t}\left(0^{+}\right)+v_{c}\left(0^{+}\right) & =0 \\
20 \times 0+2 \frac{d i}{d t}\left(0^{+}\right)+50 & =0 \\
\frac{d i}{d t}\left(0^{+}\right) & =\frac{-50}{2}=-25
\end{aligned}
$$

Differentiating equation (1)

$$
\begin{equation*}
R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0 \tag{8}
\end{equation*}
$$

Substituting initial conditions

$$
\begin{aligned}
R \frac{d i}{d t}\left(0^{+}\right)+L \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)+\frac{i\left(0^{+}\right)}{C} & =0 \\
20 \times(-25)+2 \frac{d^{2} i}{d t^{2}}(0+)+\frac{0}{C} & =0 \\
\frac{d^{2} i}{d t^{2}}\left(0^{+}\right) & =\frac{500}{2}=250 \mathrm{~A} / \mathrm{sec}^{2}
\end{aligned}
$$

July-2016 For the circuit shown in Figure 16 the switch K is changed from position A to B at $t=0$. After having reached steady state in position A. Find $\mathrm{i} \frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$, and $\frac{d^{3} i}{d t^{3}}$ at $\mathrm{t}=0+$.

Figure 16: Example
Solution:
Before connecting to position B switch was at position A at $t=0$ - under steady state condition capacitor charges with voltage of $v(0-)=100=$ $v(0+)$ and after that it acts as an open circuit which is as shown in Figure 17(a)

Figure 17: Example
At $\mathrm{t}=0$ - , inductor is in short circuit and capacitor is after fully charged and it is also in open circuit state.

$$
\begin{equation*}
i(0-)=0 \text { and also } i(0+)=0 \tag{9}
\end{equation*}
$$

When switch is at position B , and at $\mathrm{t}=0+$ the circuit diagram is as shown in Figure 15 (b)

Applying KVL for the circuit we have

$$
\begin{aligned}
L \frac{d i}{d t}+\frac{1}{C} \int i d t & =0 \\
L \frac{d i}{d t}+v_{c}(t) d t & =0
\end{aligned}
$$

At $\mathrm{t}=0+$ and $v_{c}(0+)=100$

$$
\begin{aligned}
L \frac{d i}{d t}(0+)+v_{c}(0+) & =0 \\
1 \frac{d i}{d t}(0+)+100 & =0 \\
\frac{d i}{d t}(0+) & =-100
\end{aligned}
$$

Differentiating equation (1)

$$
\begin{equation*}
L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0 \tag{10}
\end{equation*}
$$

Substituting initial conditions

$$
\begin{aligned}
\frac{d^{2} i}{d t^{2}}(0+)+\frac{i(0+)}{C} & =0 \\
1 \frac{d^{2} i}{d t^{2}}(0+)+\frac{0}{C} & =0 \\
\frac{d^{2} i}{d t^{2}}(0+) & =0 A / \sec ^{2} \\
\frac{d^{3} i}{d t^{3}}(0+) & =0 A / \sec ^{2}
\end{aligned}
$$

July-2016-2 For the circuit shown in Figure 18 the switch K is opened at $\mathrm{t}=0$. Find $\mathrm{i} \frac{d i}{d t}, v_{c}, \frac{d v_{c}}{d t}$ at $\mathrm{t}=0+$.

Figure 18: Example
Solution: When switch is at position a at $t=0$ circuit which is as shown in Figure 19

Figure 19: Example
When switch is at opened, at $\mathrm{t}=0+$ circuit which is as shown in Figure 19 (a)

$$
\begin{gather*}
V=\operatorname{Ri}(0-) \tag{11}\\
i(0-)=\frac{V}{R}=\frac{4}{2}=2 A \tag{12}
\end{gather*}
$$

When switch is at opened, at $\mathrm{t}=0+$ circuit which is as shown in Figure 19 (b)

Applying KVL

$$
\begin{equation*}
V=\frac{1}{C} \int i d t+L \frac{d i}{d t}+R i \tag{13}
\end{equation*}
$$

At $\mathrm{t}=0+$

$$
\begin{align*}
2= & +1 \times \frac{d i(0+)}{d t}+1 \times i(0+) \tag{14}\\
2 & =0+1 \times \frac{d i(0+)}{d t}+1 \times i(0+) \\
\frac{d i}{d t}(0+) & =2-1 \times 2=0
\end{align*}
$$

The voltage across capacitor is

$$
\begin{align*}
v_{c}(t) & =\frac{1}{C} \int i \tag{15}\\
\frac{d v_{c}(t)}{d t} & =\frac{1}{C} i \\
\frac{d v_{c}(t)}{d t}(0+) & =\frac{1}{C} i(0+) \\
\frac{d v_{c}(t)}{d t}(0+) & =\frac{1}{1} 2=2 V
\end{align*}
$$

July-2015-6-b For the circuit shown in Figure 20 the switch K is opened at $t=0$ after reaching the steady state condition. Determine voltage across switch and its first and second derivatives at $t=0^{+}$.

Figure 20: Example
Solution: Before opening switch and at $\mathrm{t}=0$ circuit diagram is as shown in Figure 21 (a)

Figure 21: Example

$$
\begin{gathered}
V=R i(0-) \\
i(0-)=\frac{V}{R}=\frac{2}{1}=2 A=i(0+)
\end{gathered}
$$

When switch is opened at $\mathrm{t}=0+$ circuit diagram is as shown in Figure 21 (b)

Applying KVL

$$
\begin{equation*}
V=\frac{1}{C} \int i d t+L \frac{d i}{d t}+R i \tag{16}
\end{equation*}
$$

At $\mathrm{t}=0+$

$$
\begin{equation*}
2=0+1 \times \frac{d i(0+)}{d t}+1 \times i(0+) \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
2 & =0+1 \times \frac{d i(0+)}{d t}+1 \times i(0+) \\
\frac{d i}{d t}(0+) & =2-1 \times 2=0
\end{aligned}
$$

Differentiating Equation 16

$$
\begin{aligned}
0 & =\frac{i}{C}+L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t} \\
1 \times \frac{d^{2} i_{1}}{d t^{2}}(0+) & =-R \frac{d i}{d t}(0+)-\frac{i(0+)}{C} \\
\frac{d^{2} i(0+)}{d t^{2}} & =-1 \times 0-\frac{2}{1 / 2}(0+)=-4 A / \sec ^{2}
\end{aligned}
$$

Differentiating Equation 16

$$
\begin{aligned}
0 & =\frac{1}{C} \frac{d i}{d t}+L \frac{d^{3} i}{d t^{3}}+R \frac{d^{2} i}{d t^{2}} \\
1 \times \frac{d^{3} i_{1}}{d t^{3}}(0+) & =-R \frac{d^{2} i(0+)}{d t^{2}}-\frac{1}{C} \frac{d(0+) i}{d t} \\
\frac{d^{3} i(0+)}{d 3^{2}} & =-1 \times(-4)-0=4 \mathrm{~A} / \sec ^{2}
\end{aligned}
$$

The voltage across capacitor is

$$
\begin{align*}
V_{k}+L \frac{d i}{d t}+R & \times i=2 \tag{18}\\
\frac{d V_{k}}{d t}+L \frac{d^{2} i}{d t^{2}}+R \times \frac{d i}{d t} & =0 \\
\frac{d v_{c}(t)}{d t}(0+) & =\frac{1}{C}(5-5)=0
\end{align*}
$$

Differentiating equation (1)

$$
\begin{equation*}
\frac{d^{2} V_{k}}{d t^{2}}+L \frac{d^{3} i}{d t^{3}}+R \times \frac{d^{2} i}{d t^{2}}=0 \tag{19}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{d^{2} V_{k}(0+)}{d t^{2}}=-L \frac{d^{3} i(0+)}{d t^{3}}+R \times \frac{d^{2} i(0+)}{d t^{2}} \\
& \frac{d^{2} V_{k}(0+)}{d t^{2}}=-1 \times 4-1 \times(-4)=0 \mathrm{~V} / \sec ^{2}
\end{aligned}
$$

DEC-2015 6-a For the circuit shown in Figure 22 the switch K is changed from position A to B at $t=0$, the steady state having been reached before switching. Calculate i, $\frac{d i}{d t}$, and $\frac{d^{2} i}{d t^{2}}$ at $\mathrm{t}=0+$.

Figure 22: Example

Solution:

Before connecting to position 2 switch was at position 1 at $\mathrm{t}=0$ - under steady state condition capacitor charges with voltage of $v(0-)=50=$ $v(0+)$ and after that it acts as an open circuit which is as shown in Figure 23 (a)

Figure 23: Example
At $\mathrm{t}=0$ - , inductor is in open circuit and capacitor is after fully charging it is also in open circuit state. That is

$$
\begin{equation*}
i(0-)=0 \quad \text { and also } i(0+)=0 \tag{20}
\end{equation*}
$$

When switch is at position 2 , and at $\mathrm{t}=0+$ the circuit diagram is as shown in Figure 23 (b)

Applying KVL for the circuit we have

$$
\begin{aligned}
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t & =0 \\
R i+L \frac{d i}{d t}+v_{c}(t) d t & =0
\end{aligned}
$$

At $\mathrm{t}=0+$ and $v_{c}(0+)=50$

$$
\begin{aligned}
\operatorname{Ri}(0+)+L \frac{d i}{d t}(0+)+v_{c}(0+) & =0 \\
20 \times 0+1 \frac{d i}{d t}(0+)+50 & =0 \\
\frac{d i}{d t}(0+) & =\frac{-50}{1}=-50 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

Differentiating equation (1)

$$
\begin{equation*}
R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0 \tag{21}
\end{equation*}
$$

Substituting initial conditions

$$
\begin{aligned}
R \frac{d i}{d t}(0+)+L \frac{d^{2} i}{d t^{2}}(0+)+\frac{i(0+)}{C} & =0 \\
20 \times(-50)+1 \frac{d^{2} i}{d t^{2}}(0+)+\frac{0}{C} & =0 \\
\frac{d^{2} i}{d t^{2}}(0+) & =\frac{1000}{1}=1000 \mathrm{~A} / \mathrm{sec}^{2}
\end{aligned}
$$

Q DEC-2015 6b) In the circuit shown in Figure 24 the steady state is reached with switch K is open. The switch K is closed at $t=0$. Solve for $i_{1}, i_{2}, \frac{d i_{1}}{d t}, \frac{d i_{2}}{d t}$ at $t=0+$.

Figure 24: Example
Solution:
When switch is opened and when steady state is reached capacitor acts as open circuit and inductor acts as short circuit which is as shown in Figure 25(a).

(a)

Figure 25: Example

$$
\begin{aligned}
& i_{1}(0-)=\frac{100}{20+10}=3.33 A \\
& i_{2}(0-)=0
\end{aligned}
$$

Voltage across capacitor is voltage across R_{2}

$$
v_{c}(0-)=i_{1}(0-) \times 10=3.33 \times 10=33.33 \mathrm{~V}
$$

When switch is closed at $t=020 \Omega$ is short circuited. Inductor acts as current source with a value of 3.33 A and capacitor acts as voltage source with a value of 33.33 V which is as shown in Figure $25(\mathrm{~b})$.

$$
i_{2}(0+)=\frac{100-33.33}{10}=6.667
$$

Apply KVL for the inductor branch

$$
100=10 i_{1}+L \frac{d i_{1}}{d t}
$$

At $t=0^{+}$

$$
\begin{aligned}
10 i_{1}\left(0^{+}\right)+L \frac{d i_{1}\left(0^{+}\right)}{d t} & =100 \\
1 \frac{d i_{1}\left(0^{+}\right)}{d t} & =100-10 \times 3.33 \\
\frac{d i_{1}\left(0^{+}\right)}{d t} & =66.7 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

Apply KVL for the capacitor branch.

$$
100=10 i_{2}+\frac{1}{C} \int i_{2} d t
$$

At $t=0^{+}$

$$
100=10 i_{2}(0+)+\frac{1}{C} \int i_{2}(0+) d t
$$

Differentiating we get

$$
\begin{aligned}
0 & =10 \frac{d i_{2}(0+)}{d t}+\frac{1}{C} i_{2}(0+) \\
\frac{d i_{2}(0+)}{d t} & =-\frac{1}{10 \times C} i_{2}(0+) \\
& =-\frac{1}{10 \times 1 \times 10^{-6}} \times 6.667 \\
& =-0.667 \times 10^{6} \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

2014-JULY) In the circuit shown in Figure 26 the switch S is changed from position a to b at $t=0$, steady state condition having been reached before switching. Find the values of $i, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$.

Figure 26: 2014-JULY
Solution:

When the switch is at position a, and at $t=0^{-}$the circuit is as shown in Figure ??. When the steady state is reached, capacitor is fully charged with a capacitor voltage $v_{c}\left(0^{-}\right)=40 \mathrm{~V}=v_{c}\left(0^{+}\right)$and current in the circuit $i_{L}\left(0^{-}\right)=0=i_{L}\left(0^{+}\right)$.

Figure 27: 2014-JULY
At $t=0^{+}$the circuit is redrawn and is as shown in Figure 28 (a).

$$
\frac{1}{C} \int i\left(0^{+}\right) d t=v_{c}\left(0^{+}\right)=20 V
$$

Figure 28: 2014-JULY
At $t>0^{+}$the circuit is redrawn and is as shown in Figure ?? (b).

$$
\begin{align*}
R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t & =0 \tag{22}\\
R i\left(0^{+}\right)+L \frac{d i}{d t}\left(0^{+}\right)+\frac{1}{C} \int i\left(0^{+}\right) d t & =0 \\
20 \times 0+1 \frac{d i}{d t}\left(0^{+}\right)+20 & =0 \\
\frac{d i}{d t}\left(0^{+}\right) & =-20 A / s e c
\end{align*}
$$

Differentiating equation 22

$$
R \frac{d i}{d t}+L \frac{d^{2} i}{d t^{2}}+\frac{i}{C}=0
$$

Substituting initial conditions

$$
\begin{aligned}
R \frac{d i}{d t}\left(0^{+}\right)+L \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)+\frac{i\left(0^{+}\right)}{C} & =0 \\
20 \times(-20)+1 \frac{d^{2} i}{d t^{2}}\left(0^{+}\right)+\frac{0}{C} & =0 \\
\frac{d^{2} i}{d t^{2}}\left(0^{+}\right) & =400 \mathrm{~A} / \sec ^{2}
\end{aligned}
$$

Q 2012-JULY-6b and 2013-DEC-6a) In the circuit shown in Figure 29 the switch K is changed from position 1 to 2 at $t=0$, steady state condition having reached before switching. Find $i, \frac{d i}{d t}, \frac{d^{2} i}{d t^{2}}$ at $t=0^{+}$.

Figure 29: 2013-JULY-6a-1

Solution:

When switch is at position 1 and when steady state is reached inductor acts as short circuit which is as shown in Figure 30. At $t=0^{-}$

$$
i\left(0^{-}\right)=\frac{20}{10}=2 A
$$

Figure 30: 2013-JULY-6a-1
Current cannot change instantaneously $i\left(0^{+}\right)=$ $i\left(0^{-}\right)=2 A$, at $t=0^{+}$the circuit is as shown in Figure 31

$$
\begin{aligned}
30 i+L \frac{d i}{d t} & =0 \\
30 i\left(0^{+}\right)+L \frac{d i\left(0^{+}\right)}{d t} & =0 \\
\frac{d i\left(0^{+}\right)}{d t} & =-30 i\left(0^{+}\right)=-30 \times 2 \\
& =-60 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

Differentiating

$$
\begin{aligned}
\frac{d^{2} i(0+)}{d t^{2}} & =-\frac{30 d i\left(0^{+}\right)}{d t} \\
& =-30 \times(-60) \\
& =1800 \mathrm{~A} / \sec ^{2}
\end{aligned}
$$

Figure 31: 2013-JULY-6a-1

Q 2013-DEC-6b) In the circuit shown in Figure 32 the switch K is opened at $t=0$. Find $v, \frac{d v}{d t}, \frac{d^{2} v}{d t^{2}}$ at $t=0^{+}$.

Figure 32: 2013-JULY-6a-1
Solution:
The switch is closed at $t=0^{-}$. When switch is opened at $t=0$ and which is as shown in Figure ??. At $t=0^{-}$

$$
v\left(0^{-}\right)=0=v\left(0^{+}\right)
$$

Figure 33: 2013-JULY-6a-1
At $t \geq 0^{+}$the circuit is as shown if Figure 34

Figure 34: 2013-JULY-6a-1

$$
\begin{aligned}
\frac{V(t)}{R}+C \frac{d V(t)}{d t} & =I \\
\frac{V\left(0^{+}\right)}{R}+C \frac{d V\left(0^{+}\right)}{d t} & =10 \\
\frac{d V\left(0^{+}\right)}{d t} & =\frac{10}{1 \times 10^{-6}} \\
& =10 \times 10^{6} \mathrm{~V} / \mathrm{sec}
\end{aligned}
$$

Differentiating

$$
\begin{aligned}
\frac{1}{R} \frac{d V(t)}{d t}+C \frac{d^{2} V(t)}{d t^{2}} & =0 \\
\frac{1}{R} \frac{d V\left(0^{+}\right)}{d t}+C \frac{d^{2} V\left(0^{+}\right)}{d t^{2}} & =0 \\
\frac{d^{2} V\left(0^{+}\right)}{d t^{2}} & =-\frac{1}{R C} \frac{d V\left(0^{+}\right)}{d t} \\
& =-\frac{10 \times 10^{6}}{100 \times 1 \times 10^{-6}} \\
& =-1 \times 10^{12} V / \sec ^{2}
\end{aligned}
$$

Q 2013-JULY-6c) In the circuit shown in Figure 35 the switch K is closed at $t=0$, all capacitor voltages and inductor currents are zero. Find $v_{1}, v_{2}, v_{3}, \frac{d v_{1}}{d t}, \frac{d v_{2}}{d t}, \frac{d v_{3}}{d t}$ at $t=0^{+}$.

Figure 35: 2013-JULY-6c
Solution:

Figure 36: 2013-JULY-6c
When switch K is closed at $t=0$ Capacitors C_{1}, C_{2} and C_{3} acts as a short circuit and inductors L_{1} and L_{3} acts as a open circuit.

KCL for node V_{1} and at $t=0^{+}$

$$
\begin{gathered}
\frac{V_{1}-v(t)}{R_{1}}+C_{1} \frac{d V_{1}}{d t}+\frac{V_{1}-V_{2}}{R_{2}}=0 \\
\frac{V_{1}-v\left(0^{+}\right)}{R_{1}}+C_{1} \frac{d V_{1}\left(0^{+}\right)}{d t}+\frac{V_{1}\left(0^{+}\right)-V_{2}\left(0^{+}\right)}{R_{2}}=0 \\
\frac{0-v\left(0^{+}\right)}{R_{1}}+C_{1} \frac{d V_{1}\left(0^{+}\right)}{d t}+\frac{0-0}{R_{2}}=0 \\
\frac{d V_{1}\left(0^{+}\right)}{d t}=\frac{v\left(0^{+}\right)}{C_{1} R_{1}}
\end{gathered}
$$

KCL for node V_{2} and at $t=0^{+}$

$$
\begin{aligned}
\frac{V_{2}-V_{1}}{R_{2}}+C_{2} \frac{d V_{2}}{d t}+\frac{1}{L_{2}} \int\left(V_{2}\right) d t & =0 \\
0+C_{2} \frac{d V_{2}\left(0^{+}\right)}{d t}+L_{2} \int\left(V_{2}\left(0^{+}\right)\right) d t & =0 \\
\frac{d V_{2}\left(0^{+}\right)}{d t} & =0
\end{aligned}
$$

KCL for node V_{3} and at $t=0^{+}$

$$
\begin{aligned}
\frac{1}{L_{1}} \int\left(V_{3}-V_{1}\right) d t+C_{3} \frac{d V_{3}}{d t}+ & =0 \\
\frac{1}{L_{1}} \int\left(V_{3}\left(0^{+}\right)-V_{1}\left(0^{+}\right)\right) d t+C_{3} \frac{d V_{3}\left(0^{+}\right)}{d t}+ & =0 \\
\frac{d V_{3}\left(0^{+}\right)}{d t} & =0
\end{aligned}
$$

Q 2011-DEC-6b) In the circuit shown in Figure 37 the switch K is closed at $t=0$. Find $i, \frac{d i_{1}}{d t}, \frac{d_{1}^{2}}{d t^{2}}, \frac{d i_{2}}{d t}, \frac{d_{2}^{2}}{d t^{2}}$ at $t=0^{+}$.

Figure 37: 2013-JULY-6a-1
Solution:
At $t=0^{-}$

$$
\begin{gathered}
v_{c}\left(0^{-}\right)=0=v\left(0^{+}\right) \\
i_{1}\left(0^{-}\right)=i_{2}\left(0^{-}\right)=i_{2}\left(0^{+}\right)=0
\end{gathered}
$$

The switch is closed at $t=0$ and at $t=0^{+}$the circuit is as shown in Figure 37.

$$
i_{1}\left(0^{+}\right)=\frac{10}{10}=1 A \quad i_{2}\left(0^{+}\right)=0 A
$$

Figure 38: 2013-JULY-6a-1

Figure 39: 2013-JULY-6a-1
Applying KVL for the loops

$$
\begin{equation*}
\frac{1}{C} \int i_{1}(t) d t+10\left[i_{1}(t)-i_{2}(t)\right]=10 \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
10\left[i_{2}(t)-i_{1}(t)\right]+10 i_{2}(t)+1 \frac{d i_{2}}{d t}=0 \tag{24}
\end{equation*}
$$

At $t=0^{+}$the equation 24 becomes

Figure 40: 2011-JULY-6C1
$10\left[i_{2}\left(0^{+}\right)-i_{1}\left(0^{+}\right)\right]+10 i_{2}\left(0^{+}\right)+1 \frac{d i_{2}\left(0^{+}\right)}{d t}=0$

$$
10[0-1]+10 \times 0+1 \frac{d i_{2}\left(0^{+}\right)}{d t}=0
$$

$$
\frac{d i_{2}\left(0^{+}\right)}{d t}=10
$$

Differentiating Equation 23

$$
\begin{equation*}
\frac{i_{1}}{C}+10\left[\frac{d i_{1}}{d t}-\frac{d i_{2}}{d t}\right]=0 \tag{25}
\end{equation*}
$$

At $t=0^{+}$

$$
\begin{aligned}
& \frac{i_{1}\left(0^{+}\right)}{C}+10\left[\frac{d i_{2}\left(0^{+}\right)}{d t}-\frac{d i_{2}\left(0^{+}\right)}{d t}\right]=0 \\
& \frac{i_{1}\left(0^{+}\right)}{C}+10\left[\frac{d i_{1}\left(0^{+}\right)}{d t}-\frac{d i_{2}\left(0^{+}\right)}{d t}\right]=0 \\
& \frac{1}{2 \times 10^{-6}}+10\left[\frac{d i_{1}\left(0^{+}\right)}{d t}-10\right]=0 \\
& 10 \frac{d i_{1}\left(0^{+}\right)}{d t}=100-\frac{1}{2 \times 10^{-6}} \\
& \frac{d i_{1}\left(0^{+}\right)}{d t}=-49990 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

Differentiating Equation 24

$$
\begin{equation*}
10 \frac{d i_{2}}{d t}-10 \frac{d i_{1}}{d t}+10 \frac{d i_{2}}{d t}+1 \frac{d^{2} i_{2}}{d t^{2}}=0 \tag{26}
\end{equation*}
$$

At $t=0^{+}$

$$
\begin{aligned}
\frac{d^{2} i_{2}\left(0^{+}\right)}{d t^{2}} & =-10 \times 10+10 \times(-49990)-10 \times 10 \\
\frac{d^{2} i_{2}\left(0^{+}\right)}{d t^{2}} & =-500100 \mathrm{~A} / \sec ^{2}
\end{aligned}
$$

Differentiating Equation 25

$$
\frac{1}{C} \frac{d i_{1}}{d t}+10 \frac{d^{2} i_{1}}{d t^{2}}-10 \frac{d^{2} i_{2}}{d t^{2}}=0
$$

At $t=0^{+}$

$$
\begin{aligned}
10 \frac{d^{2} i_{1}\left(0^{+}\right)}{d t^{2}} & =10 \frac{d^{2} i_{2}\left(0^{+}\right)}{d t^{2}}-\frac{1}{2 \times 10^{6}} \frac{d i_{1}\left(0^{+}\right)}{d t} \\
\frac{d^{2} i_{1}\left(0^{+}\right)}{d t^{2}} & =-50010-0.5 \times 10^{5}(-49990) \\
\frac{d^{2} i_{1}\left(0^{+}\right)}{d t^{2}} & =2.499 \times 10^{9} \mathrm{~A} / \sec ^{2}
\end{aligned}
$$

Q 2020-JULY-6a, 2011-JULY-6c) Determine $V, \frac{d V}{d t}, \frac{d^{2} V}{d t^{2}}$ at $t=0^{+}$when the switch K is opened at $t=0$ for the circuit shown in Figure 40.

Solution:
At $t=0^{-}$the switch is closed

$$
i_{L}\left(0^{-}\right)=0
$$

Fige switch is open which is as shown in Figure 41

Figure 41: 2011-JULY-6C1
At $t \geq 0^{+}$the s is as shown in Figure 42

Figure 42: 2011-JULY-6C1

$$
\begin{equation*}
\frac{V(t)}{R}+\frac{1}{L} \frac{1}{C} \int V(t)(t) d t=2 \tag{27}
\end{equation*}
$$

Differentiating Equation 27

$$
\frac{1}{R} \frac{d V(t)}{d t}+\frac{1}{L} V(t)=0
$$

At $t=0^{+}$

$$
\frac{1}{R} \frac{d V\left(0^{+}\right)}{d t}+\frac{1}{L} V\left(0^{+}\right)=0
$$

$$
\begin{aligned}
\frac{1}{R} \frac{d V\left(0^{+}\right)}{d t}+\frac{1}{L} V\left(0^{+}\right) & =0 \\
\frac{1}{200} \frac{d V\left(0^{+}\right)}{d t} & =-\frac{1}{L} V\left(0^{+}\right)=-400 V \\
\frac{d V\left(0^{+}\right)}{d t} & =-\frac{1}{L} V\left(0^{+}\right)=-8 \times 10^{4} V / \mathrm{sec}
\end{aligned}
$$

Differentiating

$$
\frac{1}{R} \frac{d^{2} v(t)}{d t^{2}}=\frac{1}{L} \frac{d V(t)}{d t}
$$

At $t=0^{+}$

$$
\begin{gathered}
\frac{1}{R} \frac{d^{2} v\left(0^{+}\right)}{d t^{2}}=\frac{1}{L} \frac{d V\left(0^{+}\right)}{d t} \\
\frac{d^{2} v\left(0^{+}\right)}{d t^{2}}=200 \times 8 \times 10^{4}=16 \times 10^{4} \mathrm{~V} / \mathrm{sec}^{2}
\end{gathered}
$$

Q Prep-Q1) In Figure 47 the switch was closed for a long time before it is opened at $\mathrm{t}=0$. Find $i_{1}\left(0^{-}\right), i_{2}\left(0^{-}\right) i_{1}\left(0^{+}\right) i_{2}\left(0^{+}\right)$.

Figure 43: Prep-Q1
Solution:
At $t=0^{-}$the switch was closed and the modified circuit is as shown in Figure 44

Figure 44: Prep-Q1
The impedance of the circuit is

$$
\begin{aligned}
R_{e q} & =15+\frac{15 \times 15}{15+15} k \Omega \\
& =15+7.5=22.5 k \Omega
\end{aligned}
$$

Total current supplied form the battery is

$$
\begin{gathered}
I=\frac{9}{R_{e q}}=\frac{9}{22.5 k \Omega} 0.4 m A \\
i_{1}\left(0^{-}\right)=0.4 m A \frac{15}{15+15} 0.2 m A \\
i_{2}\left(0^{-}\right)=0.4 m A \frac{15}{15+15} 0.2 m A
\end{gathered}
$$

At $t=0^{+}$the switch is open

$$
\begin{aligned}
& i_{1}\left(0^{+}\right)=0.2 m A \\
& i_{2}\left(0^{+}\right)=-0.2 m A
\end{aligned}
$$

Q Prep-Q1) In Figure 47 the switch was closed for a long time before it is opened at $t=0$. Find $i_{1}\left(0^{-}\right), i_{2}\left(0^{-}\right) i_{1}\left(0^{+}\right) i_{2}\left(0^{+}\right)$.

Figure 45: Prep-Q1
Solution:
Q Prep-Q1) In Figure 47 the switch was closed for a long time before it is opened at $\mathrm{t}=0$. Find $i_{1}\left(0^{-}\right), i_{2}\left(0^{-}\right) i_{1}\left(0^{+}\right) i_{2}\left(0^{+}\right)$.

Figure 46: Prep-Q1
Solution:
Q Prep-Q1) In Figure 47 the switch was closed for a long time before it is opened at $\mathrm{t}=0$. Find $i_{1}\left(0^{-}\right), i_{2}\left(0^{-}\right) i_{1}\left(0^{+}\right) i_{2}\left(0^{+}\right)$.

Figure 47: Prep-Q1
Solution:

