Chapter 1

Laplace Transform

If $\mathrm{f}(\mathrm{t})$ is a function in time, and its Laplace transform $\mathrm{F}(\mathrm{s})$ is expressed as:

$$
\begin{equation*}
L[f(t)]=F(S)=\int_{0}^{\infty} f(t) e^{-s t} d t \tag{1.1}
\end{equation*}
$$

Q 1) Find the Laplace transform of the unit step function as shown in Figure 1.2.

Figure 1.1: Step function

$$
\begin{align*}
L[f(t)] & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} e^{-a t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(s+a) t} d t\left[-\frac{1}{s+a} e^{-s t}\right]_{0}^{\infty}=\frac{1}{s+a}
\end{align*}
$$

Q 3) Find the Laplace transform of the $f(t)=$ sinwt. Solution:

$$
\begin{aligned}
L[f(t)] & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} \sin \omega t e^{-s t} d t \\
& =\int_{0}^{\infty} \frac{e^{j \omega t}-e^{-j \omega t}}{2 j} e^{-s t} d t \\
& =\frac{1}{2 j}\left[\int _ { 0 } ^ { \infty } \left(e^{-(s-j \omega t)} d t-\int_{0}^{\infty}\left(e^{-(s+j \omega t)} d t\right]\right.\right. \\
& =\frac{1}{2 j}\left[\frac{1}{s-j \omega}-\frac{1}{s+j \omega}\right]=\frac{1}{2 j} \frac{2 j \omega}{s^{2}+\omega^{2}} \\
& =\frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
$$

Q 2) Find the Laplace transform of the $f(t)=e^{a t}$ where a is constant.

Solution:

$$
\begin{aligned}
L[f(t)] & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} e^{a t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} d t\left[-\frac{1}{s-a} e^{-s t}\right]_{0}^{\infty}=\frac{1}{s-a}
\end{aligned}
$$

Solurion.
Solution:
The unit step function is defined as

$$
\begin{aligned}
u(t) & = \begin{cases}1, & \text { for } t \geq 0 \\
0, & \text { for } t<0\end{cases} \\
L[f(t)] & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} 1 e^{-s t} d t \\
& =\left[-\frac{1}{S} e^{-s t}\right]_{0}^{\infty}=\frac{1}{S}
\end{aligned}
$$

Similarly Laplace transform of the $f(t)=e^{-a t}$ is

$$
\begin{aligned}
L[f(t)] & =\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} \cos \omega t e^{-s t} d t \\
& =\int_{0}^{\infty} \frac{e^{j \omega t}+e^{-j \omega t}}{2} e^{-s t} d t \\
& =\frac{1}{2 j}\left[\int _ { 0 } ^ { \infty } \left(e^{-(s-j \omega t)} d t+\int_{0}^{\infty}\left(e^{-(s+j \omega t)} d t\right]\right.\right. \\
& =\frac{1}{2}\left[\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right]=\frac{1}{2} \frac{2 s}{s^{2}+\omega^{2}} \\
& =\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

Q 5 2011-DEC-7a) Find the Laplace transform i) $\sin ^{2} t$ ii) $\cos ^{2} t$, iii) $\sin \omega t$
i) $\sin ^{2} t$

$$
\begin{aligned}
f(t) & =\sin ^{2} t \\
f(t) & =\left[\frac{1-\cos 2 t}{2}\right]=\frac{1}{2}-\frac{1}{2} \cos 2 t \\
F(s) & =\frac{1}{2 s}-\frac{1}{2}\left[\frac{s}{s^{2}+4}\right] \\
& =\frac{s^{2}+4-s^{2}}{2 s\left(s^{2}+4\right)} \\
& =\frac{2}{s\left(s^{2}+4\right)}
\end{aligned}
$$

ii) $\cos ^{2} t$

$$
\begin{aligned}
f(t) & =\cos ^{2} t \\
f(t) & =\left[\frac{1+\cos 2 t}{2}\right]=\frac{1}{2}+\frac{1}{2} \cos 2 t \\
F(s) & =\frac{1}{2 s}+\frac{1}{2}\left[\frac{s}{s^{2}+4}\right] \\
& =\frac{s^{2}+4+s^{2}}{2 s\left(s^{2}+4\right)} \\
& =\frac{2\left(s^{2}+2\right)}{2 s\left(s^{2}+4\right)} \\
& =\frac{s^{2}+2}{s\left(s^{2}+4\right)}
\end{aligned}
$$

Time Shifting Property

If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$ then, for any real number t_{o}

$$
L\left[f\left(t-t_{o}\right) u\left(t-t_{o}\right)\right]=e^{-t_{o} s} F(s)
$$

$$
\begin{aligned}
L\left[f\left(t-t_{o}\right) u\left(t-t_{o}\right)\right] & =\int_{0}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0}^{\infty} f\left(t-t_{o}\right) u\left(t-t_{o}\right) e^{-s t} d t \\
u\left(t-t_{o}\right)= & \begin{cases}1, & \text { for } t \geq t_{o} \\
0, & \text { for } t<t_{o}\end{cases} \\
L\left[f\left(t-t_{o}\right) u\left(t-t_{o}\right)\right] & =\int_{t_{o}}^{\infty} f\left(t-t_{o}\right) e^{-s t} d t \\
\text { Let } \tau=t-t_{o} \quad t=\tau & +t_{o} \\
L\left[f\left(t-t_{o}\right) u\left(t-t_{o}\right)\right] & =\int_{0}^{\infty} f(\tau) e^{-s\left(\tau+t_{o}\right)} d \tau \\
& =e^{-t_{o} s} \int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau \\
& =e^{-t_{o} s} F(s)
\end{aligned}
$$

Differentiation in Time domain

If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$ then

$$
L\left[\frac{d f(t)}{d t}\right]=s F(s)-f(0)
$$

Let

$$
y(t)=\frac{d f(t)}{d t}
$$

$$
\begin{aligned}
L[y(t)] & =\int_{0}^{\infty} y(t) e^{-s t} d t \\
Y[s] & =\int_{0}^{\infty} \frac{d f(t)}{d t} e^{-s t} d t
\end{aligned}
$$

Integrating by parts

$$
\begin{aligned}
Y[s] & =\left[e^{-s t} f(t)\right]_{0}^{\infty}-\int_{0}^{\infty} f(t)\left(-s e^{-s t}\right) d t \\
& =0-f(0)+s \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =-f(0)+s F(s) \\
& =s F(s)-f(0)
\end{aligned}
$$

Similarly

$$
L\left[\frac{d^{n} f(t)}{d t^{n}}\right]=s^{n} F(s)-s^{n-1} f(0) \cdots-f^{n-1}(0)
$$

Integration in Time domain

If

$$
y(t)=\int_{0}^{t} f(\tau) d \tau
$$

then

$$
\begin{gathered}
L[y(t)]=Y(s)=\frac{F(s)}{s} \\
L[f(t)]=F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
\end{gathered}
$$

Divide both sides by s

$$
\frac{F(s)}{s}=\int_{0}^{\infty} f(t) \frac{e^{-s t}}{s} d t
$$

$$
\begin{aligned}
\frac{F(s)}{s} & =\left[\frac{e^{-s t}}{s} y(t)\right]_{0}^{\infty}-\int_{0}^{\infty} y(t) \frac{e^{-s t}}{s}(-s) d t \\
& =y(t)\left[\frac{e^{-s t}}{s}\right]_{0}^{\infty}+\int_{0}^{\infty} y(t) \frac{e^{-s t}}{s}(s) d t
\end{aligned}
$$

$$
\text { At } t=\infty
$$

$$
e^{-\infty}=0
$$

and

$$
\begin{aligned}
y(t) & =\int_{0}^{t} f(\tau) d \tau \\
y(0) & =\int_{0}^{0} f(\tau) d \tau=0
\end{aligned}
$$

Hence

$$
Y(s)=\frac{F(s)}{s}
$$

Table 1.1: Laplace Transform

Function	Laplace Transform	Function	Laplace Transform
$\mathrm{u}(\mathrm{t})$	$\frac{1}{S}$	$\delta(t)$	1
t	$\frac{1}{S^{2}}$	t^{n}	$\frac{n!}{S^{n+1}}$
$e^{a t}$	$\frac{1}{S-a}$	$e^{-a t}$	$\frac{1}{S+a}$
$t e^{-a t}$	$\frac{1}{(S+a)^{2}}$	$t e^{+a t}$	$\frac{1}{S-a)^{2}}$
$e^{a t} f(t)$	$F(S-a)$	$e^{-a t} f(t)$	$F(S+a)$
$\sin \omega t$	$\frac{\omega}{S^{2}+\omega^{2}}$	$\cos \omega t$	$\frac{S}{S^{2}+\omega^{2}}$
$e^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$	$e^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$

Q 1) Find the Laplace transform of the unit step function as shown in Figure 1.2.

Figure 1.2: Step function
Solution:
The unit step function is defined as

$$
\begin{gathered}
u(t)= \begin{cases}1, & \text { for } t \geq 0 \\
0, & \text { for } t<0\end{cases} \\
L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} 1 e^{-s t} d t \\
F(s)=\left[-\frac{1}{s} e^{-s t}\right]_{0}^{\infty}=\frac{1}{s}
\end{gathered}
$$

Q 2) Find the Laplace transform of the unit step function $u(t-1)$ as shown in Figure 1.3 (a).

(a)

(b)

Figure 1.3: Step function
Solution:
The unit step function is defined as

$$
u(t-a)= \begin{cases}1, & \text { for } t \geq a \\ 0, & \text { for } t<a\end{cases}
$$

Using Time shift property
$L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} u(t-a) e^{-s t} d t=\frac{1}{s} e^{-a s}$
Q 3) Find the Laplace transform of the unit step function $u(t+1)$ as shown in Figure 1.3 (b).

The unit step function is defined as

$$
u(t+a)= \begin{cases}1, & \text { for } t \geq-a \\ 0, & \text { for } t<-a\end{cases}
$$

Using Time shift property

$$
L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} u(t+a) e^{-s t} d t=\frac{1}{S} e^{a s}
$$

Q 4) Find the Laplace transform of the unit ramp function $r(t)$ as shown in Figure 1.3 (b).
The ramp function is defined as

$$
r(t)=\left\{\begin{array}{l}
0, t \leq 0 \\
t, t \geq 0
\end{array}\right.
$$

$$
L[f(t)]=F[s]=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} t e^{-s t} d t
$$

Integrating by parts and substituting limits

$$
\begin{aligned}
\int_{0}^{\infty} t e^{-s t} d t & =\left[\frac{t e^{-s t}}{-s}\right]_{0}^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t \\
& =0+\frac{1}{s}\left[\frac{e^{-s t}}{-s}\right]_{0}^{\infty}=\frac{1}{s^{2}}
\end{aligned}
$$

Q 5) Find the Laplace transform of the unit ramp function $r(t)$ as shown in Figure 1.4.

Figure 1.4: Unit ramp function
The ramp function is defined as

$$
\begin{gathered}
r(t)=\left\{\begin{array}{l}
t, t \geq a \\
0, t \leq 0
\end{array}\right. \\
L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} t e^{-s t} d t=\frac{1}{s^{2}}
\end{gathered}
$$

Q 6) Find the Laplace transform of the unit ramp function $\mathrm{r}(\mathrm{t})$ as shown in Figure 1.6 (a).

(a)
(b)

Figure 1.5: Unit ramp function
The ramp function is defined as

$$
\begin{gathered}
A r(t-a)=\left\{\begin{array}{l}
(t-a), t \geq a \\
0, t \leq 0
\end{array}\right. \\
L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty}(t-a) e^{-s t} d t=\frac{A}{s^{2}} e^{-a s}
\end{gathered}
$$

Q 7) Find the Laplace transform of the unit ramp function $\mathrm{r}(\mathrm{t})$ as shown in Figure 1.6 (b).

Figure 1.6: Unit ramp function
The ramp function is defined as

$$
r(t)=\left\{\begin{array}{l}
-A(t+a), t \geq a \\
0, t \leq 0
\end{array}\right.
$$

$L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty}(t-a) e^{-s t} d t=-\frac{A}{s^{2}} e^{-a s}$

Q 8) Find the Laplace transform of the stair case waveform as shown in Figure 1.7.

Figure 1.7: Staircase function The ramp function is defined as

$$
u(t)=\left\{\begin{array}{l}
1,1<t<2 \\
2,2<t<3 \\
3,3<t<4 \\
4,4<t<5 \\
0, \text { otherwis3 }
\end{array}\right.
$$

$$
u(t)=[u(t-1)-u(t-2)]+2[u(t-2)-u(t-3)]
$$

$$
\begin{aligned}
u(t)= & {[u(t-1)-u(t-2)]+2[u(t-2)-u(t-3)] } \\
+ & 3[u(t-3)-u(t-4)]+4[u(t-4)-u(t-5)] \\
= & u(t-1)+u(t-2)+u(t-3)+u(t-4) \\
& -4 u(t-5)
\end{aligned}
$$

$$
U(s)=\frac{1}{s}\left[e^{-s}+e^{-2 s}+e^{-3 s}+e^{-4 s}-4 e^{-5 s}\right]
$$

Q 1) Find the Laplace transform of the square wave as shown in Figure 1.8.

Figure 1.8: Square wave
Solution:
By considering one complete cycle from 0 to 2 T

Figure 1.9: Square wave
Laplace transform for complete periodic waveform is

$$
\begin{aligned}
L[f(t)] & =\left[\frac{1}{\left.1-e^{-s t}\right)}\right] F_{1}(S) \\
L[f(t)] & =\left[\frac{1}{\left.1-e^{-s 2 T}\right)}\right] \frac{V}{S}\left[\left(1-e^{-s T}\right)^{2}\right] \\
& =\frac{V}{S}\left[\frac{\left(1-e^{-s T}\right)^{2}}{1-\left(e^{-s T}\right)^{2}}\right] \\
& =\frac{V}{S}\left[\frac{\left(1-e^{-s T}\right)^{2}}{\left(1+\left(e^{-s T}\right)\left(1-\left(e^{-s T}\right)\right.\right.}\right] \\
& =\frac{V}{S}\left[\frac{\left(1-e^{-s T}\right)}{\left(1+e^{-s T}\right)}\right]
\end{aligned}
$$

Q 2) Find the Laplace transform of the waveform as shown in Figure 1.10.

Figure 1.10
Solution:

Figure 1.11

By considering one complete cycle from 0 to T

Laplace transform of the complete periodic waveform is

$$
\begin{aligned}
L\left[f_{(}(t)\right] & =\frac{V}{T} r(t)-\frac{V}{T} r(t-T)-V u(t-T) \\
F_{1}(S) & =\frac{V}{T} \frac{1}{S^{2}}-\frac{V}{T}\left[e^{-T S} \frac{1}{S^{2}}\right]-V \frac{1}{S} e^{-T S} \\
& =\frac{V}{T S^{2}}\left[1-e^{-T S}-T S e^{-T S}\right]
\end{aligned}
$$

$$
\begin{aligned}
F(S) & =\frac{F_{1}(S)}{1-e^{-T S}} \\
& =\frac{V}{T S^{2}\left(1-e^{-T S}\right)}\left[1-e^{-T S}-T S e^{-T S}\right] \\
& =\frac{V}{T S^{2}\left(1-e^{-T S}\right)}\left[1-e^{-T S}-T S e^{-T S}\right]
\end{aligned}
$$

Q 3) Find the Laplace transform of the waveform as shown in Figure 1.12.

Figure 1.12

Solution:

Figure 1.13

Figure 1.14

$$
\begin{aligned}
f(t)= & 2 r(t)-6 r(t-1)+10 r(t-1.5)-12 r(t-2) \\
& +12 r(t-3) \\
F(S)= & \frac{2}{s^{2}}-\frac{6}{s^{2}} e^{-s}+\frac{10}{s^{2}} e^{-2 s}-\frac{12}{s^{2}} e^{-2 s}+\frac{12}{s^{2}} e^{-3 s} \\
= & \frac{2}{s^{2}}\left[1-3 e^{-S}+5 e^{-1.5 s}-6 e^{-2 s}+6 e^{-3 s}\right]
\end{aligned}
$$

Q 4) Find the Laplace transform of the waveform as shown in Figure 1.15.

Figure 1.15: Sawtooth Wave
Solution:

Figure 1.16: Sawtooth Wave
By considering one complete cycle from 0 to T

$$
\begin{aligned}
f(t) & =V u(t)-\frac{2 V}{T} r(t)+\frac{2 V}{T} r(t-T)+V u(t-T) \\
F_{1}(S) & =\frac{V}{s}-\frac{2 V}{T} \frac{1}{S^{2}}+\frac{2 V}{T}\left[e^{-T S} \frac{1}{S^{2}}\right]+\frac{V}{s} e^{-T S} \\
& =\frac{V}{s}\left[1+e^{-T S}\right]-\frac{2 V}{T S^{2}}\left[1-e^{-T S}\right]
\end{aligned}
$$

Laplace transform of the periodic waveform is

$$
F(S)=\frac{F_{1}(S)}{1-e^{-T S}}=\frac{1}{1-e^{-T S}} \frac{V}{s}\left[1+e^{-T S}\right]-\frac{2 V}{T S^{2}}\left[1-e^{-T S}\right]
$$

Q 5) Find the Laplace transform of the waveform as shown in Figure 1.17.

Figure 1.17: Trapezoid Wave
Solution:

Figure 1.18: Trapezoid Wave

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{3}(t)+f_{4}(t) \\
& \left.=\frac{V}{t_{0}} t u(t)-\frac{V}{t_{0}}\left(t-t_{0}\right) u\left(t-t_{0}\right)-\frac{V}{t_{0}}\left[t-\left(T-t_{0}\right)-u\left(t-\left(T-t_{0}\right)\right)\right]+\frac{V}{t_{0}}[t-T)-u(t-T)\right] \\
F(s) & =\frac{V}{t_{0}} \frac{1}{s^{2}}-\frac{V}{t_{0}} \frac{1}{s^{2}} e^{-t_{0} s}-\frac{V}{t_{0}} \frac{1}{s^{2}} e^{-\left(T-t_{0}\right) s}+\frac{V}{t_{0}} \frac{1}{s^{2}} e^{-T s}
\end{aligned}
$$

Q 6) Find the Laplace transform of the waveform as shown in Figure 1.19.

Figure 1.19: Trapezoid Wave

Solution:

Figure 1.20: Trapezoid Wave

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{3}(t)+f_{4}(t)+f_{5}(t) \\
& =2 r(t) u(t)-2 r(t-1) u(t-1)-4 r(t-2) u(t-2)+6 r(t-3) u(t-3)-6 r(t-4) u(t-4) \\
F(s) & =\frac{2}{s^{2}}-\frac{2}{s^{2}} e^{-2 s}-\frac{4}{s^{2}} e^{-2 s}+\frac{6}{s^{2}} e^{-3 s}-\frac{6}{s^{2}} e^{-4 s}
\end{aligned}
$$

Q 7) Find the Laplace transform of the waveform as shown in Figure 1.21.

Figure 1.21: Trapezoid Wave
Solution:

Figure 1.22: Trapezoid Wave

$$
\text { Slope }=\frac{E}{t_{0}}
$$

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{3}(t)+f_{4}(t)+f_{5}(t) \\
& =\frac{V}{a} r(t)-\frac{V}{a} r(t-a)-\frac{V}{a} r(t-3 a)+\frac{V}{a} r(t-4 a) \\
F(s) & =\frac{V}{a}\left[\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-a s}-\frac{1}{s^{2}} e^{-3 a s}+\frac{1}{s^{2}} e^{-4 a s}\right]
\end{aligned}
$$

Q 8) Find the Laplace transform of the waveform as shown in Figure 1.23.

Figure 1.23: Trapezoid Wave
Solution:

Figure 1.24: Trapezoid Wave

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{3}(t)+f_{4}(t) \\
& =\frac{2}{T} r(t)-\frac{2}{T} r(t-T / 2)-\frac{2}{T} r(t-T / 2)+\frac{2}{T} r(t-T) \\
& =\frac{2}{T} r(t)-\frac{4}{T} r(t-T / 2)+\frac{2}{T} r(t-T) \\
F(s) & =\frac{2}{T}\left[\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-T / 2 s}-\frac{1}{s^{2}} e^{-T / 2 s}+\frac{1}{s^{2}} e^{-T s}\right]
\end{aligned}
$$

Q 9) Find the Laplace transform of the waveform as shown in Figure 1.25.

Figure 1.25: Trapezoid Wave

Solution:

Figure 1.26: Trapezoid Wave

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{3}(t) \\
& =u(t)+\frac{V}{1} r(t-2)+\frac{V}{1} r(t-3) \\
F(s) & =\frac{V}{s^{2}}-\frac{V}{s^{2}} e^{-2 s}+\frac{V}{s^{2}} e^{-3 s}
\end{aligned}
$$

Q 10) Find the Laplace transform of the waveform as shown in Figure 1.27.

Figure 1.27: Square wave

Solution:

By considering one complete cycle from 0 to T

Figure 1.28: Square wave
Sinusoidal signal has a one cycle duration of 2 T .

$$
\begin{gathered}
\omega=2 \pi f=2 \pi \frac{1}{2 T}=\frac{\pi}{T} \\
L[\sin \omega t]=\frac{\omega}{S^{2}+\omega^{2}} \\
L[f(t)]=V \sin \frac{\pi}{T} t u(t)+V \sin \frac{\pi}{T}(t-T) u(t-T) \\
F_{1}(S)=V\left[\frac{\frac{\pi}{T}}{S^{2}+\left(\frac{\pi}{T}\right)^{2}}+\frac{\frac{\pi}{T}}{S^{2}+\left(\frac{\pi}{T}\right)^{2}} e^{-T S}\right] \\
=V \frac{\frac{\pi}{T}}{S^{2}+\left(\frac{\pi}{T}\right)^{2}}\left[1+e^{-T S}\right]
\end{gathered}
$$

Laplace transform of the periodic waveform is

$$
\begin{aligned}
F(S) & =\frac{F_{1}(S)}{1-e^{-T S}} \\
& =V \frac{\frac{\pi}{T}}{S^{2}+\left(\frac{\pi}{T}\right)^{2}}\left[1+e^{-T S}\right] \frac{1}{\left(1-e^{-T S}\right)} \\
& =\frac{V}{T S^{2}\left(1-e^{-T S}\right)}\left[1-e^{-T S}-T S e^{-T S}\right]
\end{aligned}
$$

Q 11) Find the Laplace transform of the waveform as shown in Figure 1.29.

Figure 1.29: Trapezoid Wave
Solution:

$$
\omega=2 \pi f=\frac{2 \pi}{T}=\frac{2 \pi}{2}=\pi(\text { For sine wave } T=2)
$$

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{3}(t) \\
& =V_{1} \sin \pi t+V_{1} \sin \pi(t-1)+\frac{V_{2}}{0.5} r(t-2) u(t-2)-\frac{V_{2}}{0.25} r(t-2.5) u(t-2)+\frac{V_{2}}{0.5} r(t-3) u(t-3) \\
F(s) & =V_{1} \frac{\pi}{s^{2}+\pi^{2}}+V_{1} \frac{\pi}{s^{2}+\pi^{2}} e^{-s}+\frac{2 V_{2}}{s^{2}} e^{-2 s}-\frac{4 V_{2}}{s^{2}} e^{-0.25 s}+\frac{2 V_{2}}{s^{2}} e^{-3 s} \\
& =V_{1} \frac{\pi}{s^{2}+\pi^{2}}\left[1+e^{-s}\right]+\frac{2 V_{2}}{s^{2}}\left[e^{-2 s}-2 e^{-0.25 s}+e^{-3 s}\right]
\end{aligned}
$$

Q 12 2009-JULY) Find the Laplace transform of the waveform as shown in Figure 1.30.

Figure 1.31: Full wave rectifier output

$$
\omega=2 \pi f=\frac{2 \pi}{T}=\frac{2 \pi}{2 \pi}=1(\text { For sine wave } T=2 \pi)
$$

Figure 1.30: Full wave rectifier output
Solution:

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t) \\
& =V \sin t+V \sin (t-\pi) \\
F(s) & =V \frac{1}{s^{2}+1^{2}}+\frac{1}{s^{2}+1^{2}} e^{-\pi s} \\
& =V \frac{\left(1+e^{-\pi s}\right)}{s^{2}+1}=\frac{V}{s^{2}+1}\left(1+e^{-\pi s}\right)
\end{aligned}
$$

For complete waveform

$$
\begin{aligned}
F_{3}(s) & =\frac{F(s)}{1-e^{-s t}}=\frac{F(s)}{1-e^{-\pi s}} \\
F_{3}(s) & =\frac{V}{s^{2}+1}\left(1+e^{-\pi s}\right) \frac{1}{1-e^{-\pi s}} \\
& =\frac{V}{s^{2}+1} \frac{\left(1+e^{-\pi s}\right)}{\left(1-e^{-\pi s}\right)}
\end{aligned}
$$

Q 13) Find the Laplace transform of the waveform as shown in Figure 1.32.

Figure 1.32: Full wave rectifier output Solution:

Q 14) Find the Laplace transform of the waveform as shown in Figure 1.34.

Figure 1.34: Full wave rectifier output

Solution:

Figure 1.35: Full wave rectifier output

Figure 1.33: Full wave rectifier output

$$
\omega=2 \pi f=\frac{2 \pi}{T}=\frac{2 \pi}{T}(\text { For sine wave } T=2 \pi)
$$

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t) \\
& =V \sin \frac{2 \pi}{T} t+V \sin \frac{2 \pi}{T}\left(t-\frac{T}{2}\right) \\
F(s) & =V \frac{\frac{2 \pi}{T}}{s^{2}+\left(\frac{2 \pi}{T}\right)^{2}}+V \frac{\frac{2 \pi}{T}}{s^{2}+\left(\frac{2 \pi}{T}\right)^{2}} e^{-\frac{T}{2} s} \\
& =V \frac{\frac{2 \pi}{T}}{s^{2}+\left(\frac{2 \pi}{T}\right)^{2}}\left(1+e^{-\frac{T}{2} s}\right)
\end{aligned}
$$

For complete waveform

$$
\begin{aligned}
& F_{3}(s)=\frac{F(s)}{1-e^{-s t}}=\frac{F(s)}{1-e^{-T s}} \\
& F_{3}(s)=V \frac{\frac{2 \pi}{T}}{s^{2}+\left(\frac{2 \pi}{T}\right)^{2}} \frac{\left(1+e^{-\frac{T}{2} s}\right)}{1-e^{-T s}}
\end{aligned}
$$

Figure 1.36: Full wave rectifier output

$$
\begin{aligned}
g(t) & =f_{1}(t)+f_{2}(t) \\
& =10 u(t)-10 u(t-a) \\
G(s) & =\frac{10}{s}-\frac{10}{s} e^{-a s} \\
& =\frac{10}{s}\left(1-e^{-a s}\right)
\end{aligned}
$$

For complete waveform

$$
F(s)=\frac{G(s)}{1-e^{-s t}}=\frac{10}{s}\left[\frac{1-e^{-a s}}{1-e^{-T s}}\right]
$$

Q 15 2010-DEC) Find the Laplace transform of the waveform as shown in Figure 1.37.

Figure 1.37
Solution:
By considering one cycle.

Figure 1.38

Figure 1.39

For complete waveform

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{2}(t) \\
& =u(t)-t u(t)+t u(t-1)(\\
F(s) & =\frac{1}{s}-\frac{1}{s^{2}}+\frac{1}{s^{2}} e^{-s}=\frac{\left(s-1+e^{-s}\right)}{s^{2}}
\end{aligned}
$$

$$
\begin{aligned}
F_{3}(s) & =\frac{F(s)}{1-e^{-s t}}=\frac{F(s)}{1-e^{-2 s}} \\
& =\frac{\left(s-1+e^{-s}\right)}{s^{2}\left(1-e^{-2 s}\right)}
\end{aligned}
$$

Q 16 2009-JULY) Find the Laplace transform of the waveform as shown in Figure 1.40.

Figure 1.40
Solution:
By considering one cycle.

Figure 1.41

$$
\begin{aligned}
f(t) & =f_{1}(t)+f_{2}(t)+f_{2}(t)+f_{2}(t) \\
& =5 u(t)-\frac{5}{3} t u(t)+\frac{5}{3} t u(t-4.2)+2 u(t-4.2) \\
F(s) & =\frac{5}{s}-\frac{5}{3 s^{2}}+\frac{5}{3 s^{2}} e^{-4.2 s}+\frac{2}{s} e^{-4.2 s}
\end{aligned}
$$

1.1 Solutions

Q 1 2012-JUNE-7a) In the circuit shown in Figure 1.42 find an expression for $i(t)$ when the switch K is closed at $\mathrm{t}=0$.

Figure 1.42: Example
Solution:

$$
i\left(0^{-}\right)=0=i\left(0^{+}\right)
$$

KVL for the given circuit is

$$
V=R i+L \frac{d i}{d t}
$$

Taking Laplace transform on both sides

$$
\begin{aligned}
& \frac{V}{s}=R I(s)+L\left[s I(s)-i\left(0^{-}\right)\right] \\
&=I(s)[R+L s] \\
& I(s)=\frac{V}{s(R+L s)} \\
&=\frac{V}{L}\left[\frac{1}{s(s+R / L)}\right] \\
& \frac{1}{s(s+R / L)}=\frac{A}{s}+\frac{B}{(s+R / L)} \\
&=\frac{1}{s(s+R / L)} \times\left. s\right|_{s=0} \\
&=\frac{1}{s(s+R / L)} \times\left.(s+R / L)\right|_{s=-R / L} \\
& B=-L / R
\end{aligned}
$$

$$
I(s)=\frac{V}{L}\left[\frac{L / R}{s}-\frac{L / R}{s+R / L}\right]
$$

$$
i(t)=\frac{V}{L}\left[\frac{L}{R}-\frac{L}{R} e^{-\frac{R}{L} t}\right]
$$

$$
=\frac{V}{R}\left[1-e^{-\frac{R}{L} t}\right]
$$

Q 2) In the circuit shown in Figure 1.43 find an expression for $i(t)$ when the switch K is closed at $\mathrm{t}=0$. Assume that there is no initial charge on the capacitor.

Figure 1.43: Example
Solution: Assuming that there is no initial charge on the capacitor then

$$
\begin{equation*}
q\left(0^{-}\right)=0=q\left(0^{+}\right) \tag{1.1}
\end{equation*}
$$

KVL for the given circuit is

$$
\begin{aligned}
V & =R i+\frac{1}{c} \int i d t \\
\frac{V}{s} & =R I(s)+\frac{1}{c}\left[\frac{I(s)}{s}+\frac{q\left(0^{-}\right)}{s}\right] \\
& =I(s)\left[R+\frac{1}{C s}\right] \\
I(s) & =\frac{V}{s\left[R+\frac{1}{C s}\right]} \\
& =\frac{V}{R\left[s+\frac{1}{R C}\right]}=\frac{V}{R} \frac{1}{\left[s+\frac{1}{R C}\right]} \\
i(t) & =\frac{V}{R} e^{-\frac{t}{R C}}
\end{aligned}
$$

Q 3 2014-JAN-7a) In the circuit shown in Figure 1.44 the battery voltage 10 V is applied for a steady state period with switch K is open. Obtain the expression for the current after closing the switch K. Use laplace transform.

Figure 1.44: Example
Solution:

$$
\begin{equation*}
i\left(0^{-}\right)=\frac{10}{3}=i\left(0^{+}\right) \tag{1.2}
\end{equation*}
$$

KVL for the given circuit is

$$
\begin{aligned}
10 & =R i+L \frac{d i}{d t} \\
\frac{10}{s} & =1 I(s)+1\left[s I(s)-L i\left(0^{+}\right)\right] \\
\frac{10}{s} & =I(s)(1+s)-\frac{10}{3} \\
I(s)(1+s) & =\frac{10}{s}+\frac{10}{3} \\
I(s) & =\frac{10}{s(1+s)}+\frac{10}{3(1+s)}
\end{aligned}
$$

$$
\begin{gathered}
\frac{10}{s(1+s)}=\frac{A}{s}+\frac{B}{(1+s)} \\
A=\frac{10}{s(1+s)} \times\left. s\right|_{s=0} \\
=10 \\
B=\frac{10}{s(1+s)} \times\left.(1+s)\right|_{s=-1} \\
=-10 \\
I(s)=\frac{10}{s}-\frac{10}{(1+s)}+\frac{10}{3(1+s)} \\
I(s)=\frac{10}{s}-\frac{6.67}{(1+s)} \\
i(t)=\left[10-6.67 e^{-t}\right] A
\end{gathered}
$$

Q 4 2013-JUNE-7a) Using Laplace transform obtain expression for the circuit shown in Figure 1.45. Assume zero initial conditions.

Figure 1.45: Example
Solution:

$$
\begin{gathered}
i\left(0^{-}\right)=i\left(0^{+}\right)=0 \\
V=10 i+L \frac{d i}{d t}+\frac{1}{C} \int i d t
\end{gathered}
$$

Taking the Laplace transform on both sides

$$
\begin{aligned}
\frac{1}{s}= & 10 I(s)+L\left[s I(s)-i\left(0^{+}\right)\right] \\
& +\frac{1}{C}\left[\frac{I(s)}{s}+\frac{q\left(0^{-}\right)}{s}\right] \\
\frac{1}{s}= & 10 I(s)+L s I(s)+\frac{1}{C} \frac{1}{s} \\
= & I(s)\left[10+10^{-3} s+\frac{10^{6}}{s}\right] \\
11= & I(s)\left[10 s+10^{-3} s^{2}+10^{6}\right] \\
1= & I(s)\left[10^{-3} s^{2}+10 s++10^{6}\right] \\
I(s)= & \frac{1}{10^{-3} s^{2}+10 s++10^{6}}
\end{aligned}
$$

Q 5 2013-JUNE-7b) For the critically related network of the circuit shown in Figure 1.46 obtain an expression for $i(t)$. Use Laplace transform.

Figure 1.46: Example
Solution:

$$
\begin{gathered}
i\left(0^{-}\right)=i\left(0^{+}\right)=0 \\
v_{i}=R i+\frac{1}{C} \int i d t \\
\delta(t)=R i+\frac{1}{C} \int i d t
\end{gathered}
$$

Taking the Laplace transform on both sides

$$
\begin{aligned}
V_{i}(s) & =R I(s)+\frac{1}{C}\left[\frac{I(s)}{s}+i \frac{\left(0^{-}\right)}{s}\right] \\
1 & =R I(s)+\frac{1}{C} \frac{I(s)}{s} \\
1 & =I(s)\left[\frac{R C s+1}{C s}\right] \\
I(s) & =\left[\frac{C s}{R C s+1}\right]=\left[\frac{10^{-6} s}{10^{-6} 10^{6} s+1}\right] \\
I(s) & =10^{-6} \frac{s}{s+1}
\end{aligned}
$$

$$
\begin{aligned}
& =10^{-6} \frac{(s+1)-1}{s+1} \\
& =10^{-6}\left[\frac{(s+1)}{s+1}-\frac{1}{s+1}\right] \\
& =10^{-6}\left[1-\frac{1}{s+1}\right] \\
i(t) & =10^{-6}\left[\delta(t)-e^{-t}\right]
\end{aligned}
$$

Q 6 In the circuit shown in Figure 1.47 if the capacitor is initially charged to 1 V , find an expression for $i(t)$, when the switch K is closed at $t=0$.Use Laplace transform

Figure 1.47: Example
Solution:
When the switch K is closed

$$
\begin{aligned}
& i\left(0^{-}\right)=0 A \frac{q\left(0^{-}\right)}{s}=1 \\
& \quad R i+L \frac{d i}{d t}+\frac{1}{C} \int i d t=0
\end{aligned}
$$

Taking the Laplace transform on both sides

$$
\begin{aligned}
2 I(s)+L\left[s I(s)-i\left(0^{+}\right)\right]+\frac{1}{C}\left[\frac{I(s)}{s}+\frac{q\left(0^{-}\right)}{s}\right] & =0 \\
2 I(s)+L s I(s)+2\left[\frac{I(s)}{s}-\frac{1}{s}\right] & =0 \\
2 I(s)+s I(s)+2 \frac{I(s)}{s} & =\frac{2}{s} \\
I(s)\left[2+s+\frac{2}{s}\right] & =\frac{2}{s} \\
I(s)\left[\frac{2 s+s^{2}+2}{s}\right] & =2 \\
I(s) & =2 \frac{1}{s^{2}+2 s+2} \\
I(s) & =2 \frac{1}{(s+1)^{2}+1} \\
i(t) & =2 e^{-t} \operatorname{sint}
\end{aligned}
$$

Q 7 In the circuit shown in Figure 1.48 the the switch K is closed and steady state is reached. At $t=0$ switch K is opened. Find the expression for current $i(t)$ in the inductor using Laplace transform.

Figure 1.48: Example
Solution:
When the switch K is closed $i\left(0^{-}\right)=\frac{100}{10}=10 A=$ $i\left(0^{+}\right) V_{c}\left(0^{-}\right)=0=V_{c}\left(0^{+}\right) q\left(0^{-}\right)=0=q\left(0^{+}\right)$

When the switch K is opened

$$
L \frac{d i}{d t}+\frac{1}{C} \int i d t=0
$$

Taking the Laplace transform on both sides

$$
\begin{aligned}
L\left[s I(s)-i\left(0^{+}\right)\right]+\frac{1}{C}\left[\frac{I(s)}{s}+\frac{q\left(0^{-}\right)}{s}\right] & =0 \\
L s I(s)-L i\left(0^{+}\right)+\frac{I(s)}{C s} & =0 \\
1 I(s)-10+\frac{I(s)}{10 \times 10^{-6}} & =0 \\
I(s)\left[s+\frac{10^{5}}{s}\right] & =10
\end{aligned}
$$

$$
\begin{array}{rc}
I(s) & =\frac{10 s}{s^{2}+10^{5}} \\
I(s) & =\frac{10 s}{s^{2}+\left(10^{5 / 2}\right)^{2}} \\
i(t) & =10 \cos \left(10^{5 / 2}\right) t
\end{array}
$$

Q 1 2017-JAN-7a) Using Laplace method obtain the expression for $i(t)$. The capacitor is zero initially.

Also obtain the expression for the capacitor voltage in S domain for the circuit shown in Figure 1.49.

Figure 1.49: Example
Solution:

Figure 1.50: Example

$$
\begin{aligned}
0 & =4 i(t)+\frac{1}{0.5} \int_{0}^{\infty} i(t) d t+4 u(t)-4 \delta(t) \\
& =4 I(s)+2 \frac{I(s)}{s}+4 \frac{1}{s}-4 \\
& =I(s)\left[4+\frac{2}{s}\right]+\left[\frac{4-4 s}{s}\right] \\
& =I(s)\left[\frac{4 s+2}{s}\right]-\left[\frac{4 s-4}{s}\right] \\
I(s)\left[\frac{4 s+2}{s}\right] & =\left[\frac{4 s-4}{s}\right] \\
I(s) & =\frac{4 s-4}{4 s+2}=\frac{4 s}{4 s+2} \frac{-4}{4 s+2} \\
I(s) & =\frac{4 s}{4 s+2}-\frac{4}{4(s+0.5)} \\
& =\frac{4 s}{4 s+2}-\frac{1}{s+0.5}
\end{aligned}
$$

Q 1 2014-JAN-7b) In the circuit shown in Figure 1.44 solve for $i_{L}(t)$ using Laplace transformation.

Figure 1.51: Example
Solution:

$$
\begin{equation*}
i\left(0^{-}\right)=5 m A=i\left(0^{+}\right) \tag{1.3}
\end{equation*}
$$

KVL for the given circuit is

$$
\begin{aligned}
5 u(t-2) & =10 i_{L}(t)+5 \frac{d i}{d t} \\
\frac{5}{s} e^{-2 s} & =10 I_{L}(s)+5\left[s I_{L}(s)-i_{L}\left(0^{+}\right)\right] \\
\frac{1}{s} e^{-2 s} & =2 I_{L}(s)+\left[s I_{L}(s)-i_{L}\left(0^{+}\right)\right] \\
\frac{1}{s} e^{-2 s} & =I_{L}(s)(2+s)-5 \times 10^{-3} \\
I_{L}(s)(2+s) & =\frac{1}{s} e^{-2 s}+5 \times 10^{-3} \\
I_{L}(s) & =\frac{1}{s(s+2)} e^{-2 s}+\frac{5 \times 10^{-3}}{s+2} \\
\frac{1}{s(s}+ & =\frac{A}{s}+\frac{B}{(s+2)} \\
A & =\frac{10}{s(s+2)} \times\left. s\right|_{s=0} \\
& =\frac{1}{2} \\
B & =\frac{1}{s(s+2)} \times\left.(s+2)\right|_{s=-2} \\
& =-\frac{1}{2}
\end{aligned}
$$

$$
I(s)=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right] e^{-2 s}+\frac{5 \times 10^{-3}}{s+2}
$$

$$
I(s)=\frac{1}{2}\left[\frac{e^{-2 s}}{s}-\frac{e^{-2 s}}{(s+2)}\right]+\frac{5 \times 10^{-3}}{s+2}
$$

$$
i(t)=\frac{1}{2}\left[u(t-2)-e^{-2(t-2)} u(t-2)\right]
$$

$$
+5 \times 10^{-3} e^{-2 t} u(t)
$$

\qquad

Q 1 2012-JUNE-7b) Find the laplace transform of the given function $f(t)=5+4 e^{-2 t}$.

Solution:

$$
\begin{aligned}
f(t) & =5+4 e^{-2 t} \\
F(s) & =\int_{0}^{\infty} 5 e^{-s t} d t+\int_{0}^{\infty} 4 e^{-2 t} e^{-s t} d t \\
& =5\left[\frac{e^{-s t}}{s}+0\right]_{0}^{\infty}+4 \int_{0}^{\infty} e^{-(s+2) t} d t \\
& =5\left[\frac{e^{-s t}}{s}+0\right]_{0}^{\infty}+4\left[\frac{e^{-(s+2) t}}{-(s+2)}+0\right]_{0}^{\infty} \\
& =\frac{5}{s}+\frac{4}{s+2}=\frac{5 s+10+4 s}{s(s+2)} \\
& =\frac{9 s+10}{s(s+2)}
\end{aligned}
$$

Q 2012-DEC-7b) For the circuit shown in Figure 1.52 was in steady state before $t=0$. The switch opened at $\mathrm{t}=0$. Find $i(t) i(t)>0$ using Laplace transform.

Figure 1.52: Example
Solution:
When the steady state is reached the circuit is as shown in Figure 1.53, capacitor is fully charged with voltage $v_{c}\left(0^{-}\right)=1 V$ and inductor current is

$$
\begin{gathered}
I_{L}\left(0^{-}\right)=\frac{1}{1}=1 V=i\left(0^{+}\right) \\
v_{c}\left(0^{-}\right)=v_{c}\left(0^{+}\right)=1 V
\end{gathered}
$$

Figure 1.53: Example
When the switch is opened the circuit is as shown in Figure 1.54

Figure 1.54: Example

$$
\begin{aligned}
& 0=0.5 \frac{d i(t)}{d t}+i(t)+\frac{1}{C} \int_{-\infty}^{t} i(t) d t \\
& 0=0.5 \frac{d i(t)}{d t}+i(t)+\frac{1}{C} \int_{-\infty}^{0} i(t) d t+\frac{1}{C} \int_{0}^{t} i(t) d t \\
& 0=0.5 \frac{d i(t)}{d t}+i(t)-v_{c}\left(0^{-}\right)+\frac{1}{C} \int_{0}^{t} i(t) d t \\
& 1=0.5 \frac{d i(t)}{d t}+i(t)+\frac{1}{C} \int_{0}^{t} i(t) d t
\end{aligned}
$$

Taking the Laplace transform on both sides

$$
\begin{aligned}
\frac{1}{s} & =0.5\left[s I(s)-i\left(0^{-}\right)\right]+I(s)+\frac{I(s)}{s} \\
\frac{1}{s}+0.5 & =I(s)\left[0.5 s+1+\frac{1}{s}\right] \\
\frac{1+0.5 s}{s} & =I(s)\left[\frac{0.5 s^{2}+s+1}{s}\right] \\
I(s) & =\frac{1+0.5 s}{0.5 s^{2}+s+1}=\frac{0.5[s+2]}{0.5\left[2 s^{2}+2 s+2\right]} \\
& =\frac{s+2}{2 s^{2}+2 s+2}=\frac{s+2}{(s+1)^{2}+1} \\
& =\frac{s+1+1}{(s+1)^{2}+1^{2}} \\
& =\frac{s+1}{(s+1)^{2}+1^{2}}+\frac{1}{(s+1)^{2}+1^{2}} \\
i(t) & =e^{-t} \operatorname{cost+e^{-t}} \operatorname{sint}
\end{aligned}
$$

$$
\begin{aligned}
L[\sin \omega t] & =\frac{\omega}{S^{2}+\omega^{2}} \quad L[\cos \omega t]=\frac{S}{S^{2}+\omega^{2}} \\
L\left[t e^{-a t}\right] & =F(S+a)
\end{aligned}
$$

Q 1 2011-JUNE-7a) Find the current $i(t)$ when switch K is opened at $\mathrm{t}=0$ with the circuit having reached steady state before the switching in Fig 1.55. Find current at $\mathrm{t}=0.5 \mathrm{sec}$

Figure 1.55: Example
Solution:

Figure 1.56: Example
At $t=0^{-}$inductor acts as a short circuit which is as shown in Figure 1.56and the current $i_{l}(t)=0^{-}$ at $t=0^{-}$is

$$
i_{l}\left(0^{-}\right)=\frac{100}{40}=2.5 A=i_{l}\left(0^{+}\right)
$$

Figure 1.57: Example
Applying KVL for the circuit as shown in Figure is 1.57

$$
\begin{aligned}
0 & =40 i(t)+L \frac{d i}{d t}+40 i(t)=80 i(t)+4 \frac{d i}{d t} \\
0 & =4 I[s I(s)-i(0)]+80 I(s) \\
0 & =4 s I(s)-10+80 I(s)=I(s)[4 s+80] \\
10 & =I(s)[4 s+80] \\
I(s) & =\frac{10}{4 s+80}=\frac{10}{4(s+20)}=\frac{2.5}{s+20} \\
i(t) & =2.5 e^{-20 t}
\end{aligned}
$$

The current at $\mathrm{t}=0.5 \mathrm{sec}$ is

$$
i(t)=2.5 e^{-20 \times 0.5}=1.135 \times 10^{-4} A
$$

Q 1 2011-JUNE-7b) Find the current $i(t)$ assuming zero initial conditions when switch K is closed at $\mathrm{t}=0$. The excitation $v(t)$ is a pulse of magnitude of 10 V and duration of 2 sec . Refer Figure 1.58.

Figure 1.58: Example
Solution:
The laplace transform of the input pulse is

Figure 1.59: Example

$$
\begin{aligned}
v(t) & =10 u(t)-10 u(t-2) \\
V(s) & =\frac{10}{s}-\frac{10}{s} e^{-2 s} \\
& =\frac{10}{s}\left[1-e^{-2 s}\right]
\end{aligned}
$$

Applying KVL for the circuit shown in Figure1.58

$$
\begin{aligned}
v(t) & =R i+\frac{1}{C} \int i d t \\
V(s) & =10 I(s)+\frac{1}{C s} I(s)=I(s)\left(10+\frac{1}{2 s}\right) \\
& =I(s)\left(\frac{20 s+1}{2 s}\right) \\
I(s) & =\frac{V(s)}{\frac{20 s+1}{2 s}}=\frac{2 s V(s)}{20 s+1}=\frac{2 s V(s)}{20(s+0.05)} \\
& =\frac{0.1 s}{s+0.05} \\
I(s) & =\frac{0.1 s}{s+0.05}\left[\frac{10}{s}\left[1-e^{-2 s}\right]\right] \\
& =\frac{1}{s+0.05}\left[1-e^{-2 s}\right]=\frac{1}{s+0.05}-\frac{e^{-2 s}}{s+0.05} \\
i(t) & =e^{-0.005 t} u(t)-e^{-0.005(t-2)} u(t-2)
\end{aligned}
$$

Q 1 2011-DEC-7c) State and prove initial value theorem

Solution:
Initial value theorem is used to find the initial value of $x(t)$ at $t=0$ i.e., $x(0)$ directly from the Laplace transform $X(s)$.

It states that if $x(t)$ is a causal signal then

$$
x(0)=\lim _{s \rightarrow \infty} s X(s)
$$

Proof

$$
L\left[\frac{d x(t)}{d t}\right]=s X(s)-x\left(0^{-}\right)
$$

Taking left hand side of the term and limit as $s \rightarrow \infty$

$$
L\left[\frac{d x(t)}{d t}\right]=\lim _{t \rightarrow \infty} \int_{0}^{\infty} e^{-s t}\left[\frac{d x(t)}{d t}\right] d t
$$

As $s \rightarrow \infty$ then $e^{-s t}=0$

$$
\begin{array}{r}
0=s X(s)-x(0) \\
x(0)=s X(s)
\end{array}
$$

Q 1 2011-DEC-7c) State and prove final value theorem

Solution:
Final value theorem is used to find the initial value of $x(t)$ at $t=\infty$ i.e., $x(\infty)$ directly from the Laplace transform $X(s)$.

It states that if $x(t)$ is a causal signal then

$$
\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s)
$$

Proof
The Laplace transform of $\frac{d x(t)}{d t}$ is

$$
L\left[\frac{d x(t)}{d t}\right]=s X(s)-x\left(0^{-}\right)
$$

Taking left hand side of the term and limit as $s \rightarrow \infty$

$$
\begin{aligned}
\lim _{s \rightarrow \infty} L\left[\frac{d x(t)}{d t}\right] & =\lim _{s \rightarrow \infty} \int_{0}^{\infty} \frac{d x(t)}{d t} e^{-s t} d t \\
& =\int_{0}^{\infty} \frac{d x(t)}{d t}\left[\lim _{s \rightarrow 0} e^{-s t}\right] d t \\
& =\int_{0}^{\infty} \frac{d x(t)}{d t} d t \\
& =[x(t)]_{0}^{\infty}=x(\infty)-x(0) \\
x(\infty)-x(0) & =\lim _{s \rightarrow \infty}[s X(s)-x(0)] \\
x(\infty) & =\lim _{s \rightarrow \infty}[s X(s)]
\end{aligned}
$$

