0.1 Millman's Theorem

Statement:

In a network if it contains a several voltage sources $E_{1}, E_{2}, E_{3} \ldots$ with an internal impedances $Z_{1}, Z_{2}, Z_{3} \ldots$, which are connected in parallel may be replaced by a single voltage source \boldsymbol{E} with internal impedance Z, where E and Z are

$$
E=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

and

$$
Z=\frac{1}{Y}=\frac{1}{Y_{1}+Y_{2}+Y_{3}}
$$

Consider a network containing source $E_{1}, E_{2}, E_{3} \ldots$ with an internal impedances $Z_{1}, Z_{2}, Z_{3} \ldots$,
which are connected in parallel is as shown in Figure 1.

Figure 1
Replace the each voltage source by current source with its internal resistance connected in parallel, which is as shown in Figure 2

Figure 2
All the current source are added to form a single current source I where I

$$
I=I_{1}+I_{2}+I_{3}
$$

Replace the impedances by a single impedance Z where Z is

$$
Y=\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}
$$

Figure 3
Next the current source by voltage source E where E is

$$
E=I Z=\frac{I_{1}+I_{2}+I_{3}}{\frac{1}{Z}}=\frac{\frac{E_{1}}{Z_{1}}+\frac{E_{2}}{Z_{2}}+\frac{E_{3}}{Z_{3}}}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}}
$$

$$
E=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

and

$$
\begin{gathered}
Y=\frac{1}{Z}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}} \\
Y=Y_{1}+Y_{2}+Y_{3}
\end{gathered}
$$

Figure 5
The current through $(6+j 8) \Omega$, impedance is

$$
\begin{aligned}
I & =\frac{E}{Z+Z_{L}}=\frac{1135}{10+6+j 8} \\
& =\frac{1135}{16+j 8}=\frac{1135}{17.88 \angle 26.56} \\
& =63.47 \angle-26.56
\end{aligned}
$$

2018-JULY Using Millman's theorem find current through R_{L} for the circuit shown in Figure 6.

Figure 6
Solution:

$$
\begin{aligned}
Y_{1} & =\frac{1}{Z_{1}}=\frac{1}{2}=0.5 \\
Y_{2} & =\frac{1}{Z_{2}}=\frac{1}{4}=0.25 \\
Y_{3} & =\frac{1}{Z_{3}}=\frac{1}{5}=0.2
\end{aligned}
$$

$$
\begin{aligned}
Y= & Y_{1}+Y_{2}+Y_{3}=0.5+0.25+0.2 \\
= & 0.95 \\
& Z=\frac{1}{Y}=\frac{1}{0.95}=1.052 \Omega \\
E= & \frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}} \\
= & \frac{20 \times 0.5+40 \times 0.25+50 \times 0.2}{0.95} \\
= & \frac{30}{0.95} \\
= & 31.57
\end{aligned}
$$

Millman's equivalent circuit is is as shown in Figure
Millman's equivalent circuit is is as shown in 7. Figure 5.

Figure 7

The current I_{L} through R_{L} is

$$
\begin{aligned}
I_{L} & =\frac{31.57}{Z+Z_{L}}=\frac{31.57}{1.052+9.4} \\
& =3.02 \mathrm{~A}
\end{aligned}
$$

2017-JAN Apply Millman's theorem to find V_{O} and I_{O} for the circuit shown in Figure 8.

Figure 8
Solution:

$$
\begin{aligned}
Y_{1} & =\frac{1}{Z_{1}}=\frac{1}{10}=0.1 \\
Y_{2} & =\frac{1}{Z_{2}}=\frac{1}{-j 5}=j 0.2 \\
Y_{3} & =\frac{1}{Z_{3}}=\frac{1}{j 5}=-j 0.2
\end{aligned}
$$

$$
\begin{aligned}
Y & =Y_{1}+Y_{2}+Y_{3}=0.1+j 0.2-j 0.2 \\
& =0.1
\end{aligned}
$$

$$
Z=\frac{1}{Y}=\frac{1}{0.1}=10 \Omega
$$

$$
\begin{aligned}
E & =\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}} \\
& =\frac{100 \times 0.1+j 100 \times j 0.2+j 100 \times-j 0.2}{0.1} \\
& =\frac{-30}{0.1} \\
& =-300
\end{aligned}
$$

Millman's equivalent circuit is is as shown in Figure 7.

Figure 9
The current I_{L} through R_{L} is

$$
\begin{aligned}
I_{L} & =\frac{-300}{Z+Z_{L}}=\frac{-300}{10+2} \\
& =25 \mathrm{~A} \\
V_{O} & =25 \times 2=50 \mathrm{~V}
\end{aligned}
$$

2014-JULLY Using Millman's theorem find the current I_{L} through R_{L} for the network shown in Figure 10.

Figure 10
Solution:

$$
\begin{aligned}
Y_{1} & =\frac{1}{Z_{1}}=\frac{1}{2}=0.5 \\
Y_{2} & =\frac{1}{Z_{2}}=\frac{1}{3}=0.33 \\
Y_{3} & =\frac{1}{Z_{3}}=\frac{1}{4}=0.25
\end{aligned}
$$

$$
\begin{aligned}
Y & =Y_{1}+Y_{2}+Y_{3}=0.5+0.33+0.25 \\
& =1.0833
\end{aligned}
$$

$$
Z=\frac{1}{Y}=\frac{1}{1.0833}=0.923 \Omega
$$

$$
E=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
=\frac{10 \times 0.5+20 \times 0.33+30 \times 0.25}{1.0833}
$$

$$
=\frac{19.16}{1.0833}
$$

$$
=17.689
$$

Millman's equivalent circuit is is as shown in Figure 11.

Figure 11
The current I_{L} through R_{L} is

$$
\begin{aligned}
I_{L} & =\frac{E}{Z+Z_{L}}=\frac{17.689}{17.689+10} \\
& =1.6191 A
\end{aligned}
$$

2013-JAN Using Millman's theorem find the current I_{L} through R_{L} for the network shown in Figure 12.

Figure 12
Solution:

$$
\begin{gathered}
Y_{1}=\frac{1}{Z_{1}} \\
Y_{1}=\frac{1}{Z_{1}}=\frac{1}{4}=0.25 \\
Y_{2}=\frac{1}{Z_{2}}=\frac{1}{4}=0.25 \\
Y_{3}=\frac{1}{Z_{3}}=\frac{1}{4}=0.25 \\
Y= \\
= \\
Y_{1}+Y_{2}+Y_{3}=0.25+0.25+0.25 \\
E=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}} \\
=\frac{-4 \times 0.25-2 \times 0.25+10 \times 0.25}{0.75} \\
= \\
=
\end{gathered}
$$

Millman's equivalent circuit is is as shown in Figure 13.

Figure 13
The current I_{L} through R_{L} is

$$
\begin{aligned}
I_{L} & =\frac{E}{Z+Z_{L}}=\frac{1.333}{1.333+10} \\
& =0.1176 \mathrm{~A}
\end{aligned}
$$

2013-JULY Using Millman's theorem find the current I_{L} through R_{L} for the network shown in Figure 14.

Figure 14
Solution:

$$
Y_{1}=\frac{1}{Z_{1}}
$$

$$
\begin{aligned}
Y & =Y_{1}+Y_{2}+Y_{3}=1+0.5+0.333 \\
& =1.833
\end{aligned}
$$

$$
Z=\frac{1}{Y}=\frac{1}{1.833}=0.5454 \Omega
$$

$$
E=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}}
$$

$$
=\frac{1 \times 1+2 \times 0.5+3 \times 0.333}{0.333}
$$

$$
=\frac{1}{1.833}
$$

$$
=1.636 \mathrm{~V}
$$

Millman's equivalent circuit is is as shown in Figure 15.

Figure 15
The current I_{L} through R_{L} is

$$
\begin{aligned}
I_{L} & =\frac{E}{Z+Z_{L}}=\frac{1.636}{0.5454+10} \\
& =0.1552 A
\end{aligned}
$$

2012-JULY Using Millman's theorem find the current I_{L} through R_{L} for the network shown in Figure 16.

Figure 16
Solution:

$$
\begin{gathered}
Y_{1}=\frac{1}{Z_{1}}=\frac{1}{2}=0.5 \\
Y_{2}=\frac{1}{Z_{2}}=\frac{1}{4}=0.25 \\
Y_{3}=\frac{1}{Z_{3}}=\frac{1}{5}=0.2 \\
Y= \\
Y_{1}+Y_{2}+Y_{3}=0.5+0.25+0.2 \\
= \\
\\
\\
Z=\frac{1}{Y}=\frac{1}{0.95}=1.052 \Omega \\
E \\
=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}} \\
= \\
=\frac{20 \times 0.5+40 \times 0.25+50 \times 0.2}{0.95} \\
=
\end{gathered}
$$

Millman's equivalent circuit is is as shown in Figure 17.

Figure 17
The current I_{L} through R_{L} is

$$
\begin{aligned}
I_{L} & =\frac{E}{Z+Z_{L}}=\frac{31.57}{1.052+9.4} \\
& =3.02 \mathrm{~A}
\end{aligned}
$$

2012-JAN Using Millman's theorem determine voltage V_{S} of the network shown in Figure 18 given that $E_{R}=230 \angle 0 V, E_{Y}=230 \angle-120 V E_{B}=$ $230 \angle 120 \mathrm{~V}$.

Figure 18
Solution:

$$
\begin{aligned}
& Y_{1}=\frac{1}{Z_{1}}=\frac{1}{j 20}=-j 0.05 \\
& Y_{2}=\frac{1}{Z_{2}}=\frac{1}{-j 20}=j 0.05 \\
& Y_{3}=\frac{1}{Z_{3}}=\frac{1}{20}=0.05 \\
& Y=Y_{1}+Y_{2}+Y_{3}=-j 0.05+j 0.05+0.05 \\
& =0.05 \\
& Z=\frac{1}{Y}=\frac{1}{0.05}=20 \Omega \\
& E_{1} Y_{1}=230 \times-j 0.05=-j 11.5 \\
& E_{2} Y_{2}=230 \angle-120 \times j 0.05 \\
& E_{2} Y_{2}=230 \angle-120 \times 0.05 \angle 90=11.5 \angle-30 \\
& E_{3} Y_{3}=230 \angle 120 \times 0.05=-j 11.5 \\
& E_{3} Y_{3}=230 \angle 120 \times 0.05=11.5 \angle 120 \\
& E=\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}} \\
& =\frac{-j 11.5+11.5 \angle-30+11.5 \angle 120}{0.05} \\
& =\frac{-j 11.5+9.95-j 5.75-5.75+j 9.95}{0.05} \\
& =\frac{4.2-j 7.3}{0.05}=\frac{8.42 \angle-60}{0.05} \\
& =168.4 \angle-60 \mathrm{~V}
\end{aligned}
$$

Millman's equivalent circuit is is as shown in Figure 19.

Figure 19

Using Millman's theorem determine current flowing through $(4+j 3) \Omega$ of the network shown in Figure 20

Figure 20
Solution:
Replace the current source and parallel resistance by a voltage source

$$
\begin{gathered}
Z_{1}=10+j 10=14.14 \angle 45^{\circ} \Omega \\
E_{1}=10 \angle 30 \times 14.14 \angle 45^{\circ}=141.4 \angle 75^{\circ}
\end{gathered}
$$

Similarly

$$
\begin{gathered}
Z_{3}=3-j 14=5 \angle-53.13^{\circ} \Omega \\
E_{3}=4 \angle-30 \times 5 \angle-53.13^{\circ}=20 \angle-83.13^{\circ}
\end{gathered}
$$

The modified network as shown in Figure 21

Figure 21

$$
\begin{aligned}
Y_{1} & =\frac{1}{Z_{1}}=\frac{1}{14.14 \angle 45^{\circ}}=0.0707 \angle-45^{\circ} \\
Y_{1} & =0.05-j 0.05 \\
Y_{2} & =\frac{1}{Z_{2}}=\frac{1}{5}=0.2 \\
Y_{3} & =\frac{1}{Z_{3}}=\frac{1}{5 \angle-53.13^{\circ}}=0.2 \angle 53.13^{\circ} \\
& =0.12+j 0.16
\end{aligned}
$$

$$
\begin{aligned}
Y & =Y_{1}+Y_{2}+Y_{3} 0.12+j 0.16 \\
& =0.37+j 0.11 \\
& =0.386 \angle 16.56
\end{aligned}
$$

$$
Z=\frac{1}{Y}=\frac{1}{0.386 \angle 16.56}=2.6 \angle-16.56 \Omega
$$

$$
\begin{aligned}
E_{1} Y_{1} & =141.14 \angle 75 \times 0.0707 \angle-45^{\circ}= \\
& =9.978 \angle 30=8.641+j 4.989 \\
E_{2} Y_{2} & =5 \angle 30 \times 0.2=1 \angle 30=0.8666+j 0.5 \\
E_{3} Y_{3} & =20 \angle-83.13 \times 0.2 \angle 53.13 \\
& =4 \angle-30=3.464-j 2
\end{aligned}
$$

$$
\begin{aligned}
E & =\frac{E_{1} Y_{1}+E_{2} Y_{2}+E_{3} Y_{3}}{Y_{1}+Y_{2}+Y_{3}} \\
& =\frac{8.641+j 4.989+0.8666+j 0.5+3.464-j 2}{0.386 \angle 16.56} \\
& =\frac{12.971+j 3.489}{0.386 \angle 16.56}=\frac{13.432 \angle 15}{0.386 \angle 16.56} \\
& =168.4 \angle-60 V
\end{aligned}
$$

Millman's equivalent circuit is is as shown in Figure 19.

Figure 22

0.2 Thevenin's and Norton's Theorems

0.2.1 Thevenin's Theorem

Statement:
Any linear, bilateral network with two terminals can be replaced by a single voltage source $E_{T H}$ in series with an impedance $Z_{T H}$, where the $E_{T H}$ is an open circuit voltage at the terminals and an impedance $Z_{T H}$ is the equivalent impedance as viewed from the terminals into the network.

Figure 23

Proof:

Consider a network as shown in Figure 24. The current in the terminal AB is

Figure 24

$$
\begin{aligned}
\frac{V-10}{2}+\frac{V}{4}+\frac{V}{18} & =0 \\
V[0.5+0.25+0.0556] & =5 \\
V & =\frac{5}{0.8056}=6.026 \\
I_{L} & =\frac{6.026}{18}=0.3448 A
\end{aligned}
$$

- Step 1: Determine the Open Circuit Voltage

Figure 25

- Step 2: Determine the Tehevenin's Impedance

Figure 26
$Z_{T H}=8+\frac{2 \times 4}{2+4}=9.333 \Omega$

- Step 3: Tehevenin's Equivalent Circuit

Figure 27

- Step 4: Current through I_{L} is

$$
\begin{aligned}
6 i_{1}-10 & =0 \\
i_{1} & =1.666 \mathrm{~A} \\
E_{T H} & =1.666 \mathrm{~A} \times 4=6.667 \mathrm{~V}
\end{aligned}
$$

$$
I_{L}=\frac{E_{T H}}{Z_{T H}+Z_{L}}=\frac{6.667 \mathrm{~V}}{9.333+10}=0.344 \mathrm{~A}
$$

Figure 28

0.2.2 Norton's Theorem

Statement:

Any linear, bilateral network with two terminals can be replaced by a single current source I_{N} in parallel with an impedance Z_{N}, where the I_{N} is an short circuit current through the terminals and an impedance Z_{N} is the equivalent impedance as viewed from the terminals into the network.

Figure 29

0.2.3 Maximum Power Transfer Theorem

Statement:
In Any linear, bilateral network maximum power is delivered to the load R_{L} by the source when the load resistance R_{L} is equal to the Thevenin's resistance $R_{T H}$.

Figure 30

Q 1) Find the Thevenin and Norton equivalent for the circuit shown in Figure 31 with respect terminals A-B

Figure 31
Solution:
Determine the Thevenin voltage $V_{T H}$. Apply KVL for the circuit shown in Figure 32.

Figure 32

$$
\begin{aligned}
18 x-12 y & =96 \\
-12 x+28 y & =0
\end{aligned}
$$

By Solving

$$
x=7.467 A \quad y=3.2 A
$$

$$
V_{O C}=7.467 \times 12 \mathrm{~A}=38.4 \mathrm{~V}
$$

$$
\begin{aligned}
Z_{T H} & =[(6 \| 12)+4] \| 12+4 \\
& =[4+4] \| 12+4 \\
& =8 \| 12+4=4.8+4 \\
& =8.8 \Omega
\end{aligned}
$$

Figure 33
To determine the short circuit current Apply KVL for the circuit shown in Figure 34

Figure 34

$$
\begin{aligned}
18 x-12 y+0 z & =96 \\
-12 x+28 y-12 z & =0 \\
0 x-12 y+16 z & =0
\end{aligned}
$$

By Solving

$$
\begin{gathered}
x=9.212 A \quad y=5.818 A \quad z=4.36 A \\
I_{S C}=I_{N}=z=4.36 A
\end{gathered}
$$

Norton's Equivalent

Figure 35
Current through R_{L} is

$$
I_{L}=\frac{V_{O C}}{R_{L}}=\frac{38.4}{20+8.8}=1.33 \mathrm{~A}
$$

Power through is

$$
P_{L}=I_{L}^{2} R_{L}=(1.33)^{2} \times 20=35.56 W
$$

Maximum power is R_{L} is

$$
\begin{aligned}
I_{L} & =\frac{V_{O C}}{R_{N}+R_{L}}=\frac{38.4}{8.8+8.8}=2.18 \mathrm{~A} \\
P_{L} & =I_{L}^{2} R_{L}=(2.18)^{2} \times 8.8=41.856 \mathrm{~W}
\end{aligned}
$$

Q 2) Find the Thevenin and Norton equivalent for the circuit shown in Figure 36 with respect terminals A-B

Figure 36
Solution:
Determine the Thevenin voltage $V_{T H}$. Apply KVL for the for the circuit shown in Figure 37.

$$
\begin{aligned}
& y=-2 A \\
& 16 x-12 y=32 \\
& 16 x-24=32 \\
& x=\frac{32-24}{16}=0.5 \mathrm{~A} \\
& V_{O C}=12[0.5 A-(-2)] .5 \mathrm{~A} \times 3=30 \mathrm{~V} \\
& 32 \mathrm{~V}
\end{aligned}
$$

Figure 37

$$
\begin{aligned}
Z_{T H} & =(4 \| 12)+1 \\
& =3+1=4 \Omega
\end{aligned}
$$

Figure 38

Thevenin's Equivalent

Norton's Equivalent

Figure 39
Q 3) Find the Thevenin and Norton equivalent for the circuit shown in Figure 40 with respect terminals A-B

Figure 40

Solution:

Determine the Thevenin voltage $V_{T H}$. Apply the KVL for the circuit shown in Figure 41.

$$
\begin{aligned}
15 x-5 y+ & =50 \\
-5 x+10 y & =0
\end{aligned}
$$

By Solving

$$
\begin{gathered}
x=4 A \quad y=2 A \\
V_{O C}=2 A \times 3=6 V
\end{gathered}
$$

Figure 41

$$
\begin{aligned}
Z_{T H} & =[(10 \| 5)+2] \| 3 \\
& =[3.33+2] \| 3 \\
& =5.33 \| 3=1.92 \Omega
\end{aligned}
$$

Figure 42
Determine the short circuit current by Applying KVL for the circuit 43

$$
\begin{aligned}
15 x-5 y & =50 \\
-5 x+7 y & =0
\end{aligned}
$$

By Solving

$$
x=4.375 A \quad y=3.125 A
$$

$$
I_{S C}=I_{N}=y=3.125 A
$$

Figure 43

Thevenin's Equivalent

Norton's Equivalent

Figure 44
Current through R_{L} is

$$
I_{L}=\frac{V_{O C}}{R_{L}}=\frac{6}{1.92+10}=0.503 \mathrm{~A}
$$

Power through is

$$
P_{L}=I_{L}^{2} R_{L}=(0.503)^{2} \times 10=2.53 \mathrm{~W}
$$

Maximum power is R_{L} is

$$
\begin{aligned}
& I_{L}=\frac{V_{O C}}{R_{N}+R_{L}}=\frac{6}{1.92+1.92}=1.5625 \mathrm{~A} \\
& P_{L}=I_{L}^{2} R_{L}=(1.5625)^{2} \times 1.92=4.68 \mathrm{~W}
\end{aligned}
$$

Q 4) Find the Thevenin and Norton equivalent for the circuit shown in Figure ?? with respect terminals a-b

Figure 45
Solution:
Determine the Thevenin voltage $V_{T H}$. Apply KVL for the circuit shown in Figure 46.
By KVL around the loop

$$
\begin{aligned}
6 i-2 i+6 i-20 & =0 \\
10 i & =20 \\
i & =2 A
\end{aligned}
$$

Voltage across AB $V_{O C}=V_{T H}$ is

$$
V_{O C}=6 i=6 \times 2=12 \mathrm{~V}
$$

Figure 46
When dependant voltage sources are present then Thevenin Resistance $R_{T H}$ is calculated by determining the short circuit current at terminals AB:

Figure 47
$x-y=i_{1}$
KVL for loop x

$$
\begin{aligned}
12 x-2 i_{1}-6 y-20 & =0 \\
12 x-2(x-y)-6 y & =20 \\
10 x-4 y & =20
\end{aligned}
$$

KVL for loop y

$$
\begin{array}{r}
-6 x+16 y=0 \\
6 x-16 y=0
\end{array}
$$

Solving the following simultaneous equations

$$
\begin{gathered}
10 x-4 y=20 \\
6 x-16 y=0 \\
x=2.353 \quad y=0.882 \\
I_{S C}=y=0.882 A
\end{gathered}
$$

Thevenin's resistance is

$$
R_{T H}=\frac{V_{T H}}{I_{S C}}=\frac{12}{0.882}=13.6 \Omega
$$

Thevenin and Norton equivalent circuits as shown in Figure 48

Figure 48
Q 5) Find the Thevenin and Norton equivalent for the circuit shown in Figure 49 with respect terminals a-b

Figure 49
Solution:
Determine the Thevenin voltage $V_{T H}$. Apply the KVL for the circuit shown in Figure 50. From the figure it is observed that

$$
i_{a}=-x
$$

By KVL for the loop x

$$
\begin{aligned}
6 x+2 i_{a}-12 & =0 \\
6 x-2 x & =12 \\
x & =\frac{12}{4}=3 A \\
i_{a}=-x & =-3 A
\end{aligned}
$$

Open Circuit voltage $V_{O C}$ is

$$
V_{O C}=2 i_{a}=2 \times(-3)=-6 V
$$

Figure 50
When dependant voltage sources are present then Thevenin Resistance $R_{T H}$ is calculated by determining the short circuit current at
terminals AB. Apply KVL for loop x

$$
\begin{aligned}
6 x+2 i_{a}-12 & =0 \\
6 x-2 x & =12 \\
x & =\frac{12}{4}=3 A \\
i_{a}=-x & =-3 A
\end{aligned}
$$

Apply KVL for loop y

$$
\begin{aligned}
3 y-2 i_{a} & =0 \\
3 y-2(-3) & =0 \\
y & =\frac{-6}{3}=-2 A
\end{aligned}
$$

Short circuit current $I_{S C}$

$$
I_{S C}=y=-2 A
$$

Thevenin resistance is $R_{T H}$

$$
R_{T H}=\frac{-6}{-2}=3 \Omega
$$

Figure 51
Thevenin's and Norton's Circuits are as shown in Figure 52

Figure 52

Q 6) Find the Thevenin and Norton equivalent for the circuit shown in Figure 53 with respect terminals a-b

Figure 53
Solution:
Determine the Thevenin voltage $V_{T H}$ for circuit shown in Figure 50. It is observed that

$$
\begin{aligned}
V_{2} & =24 \\
i_{a} & =\frac{V_{1}}{8}
\end{aligned}
$$

Figure 54
Apply (KCL) node voltage for the circuit shown in Figure 54 for node 1

$$
\begin{aligned}
\frac{V_{1}-V_{2}}{2}+4+\frac{V_{1}}{8}+3 i_{a} & =0 \\
\frac{V_{1}-24}{2}+4+\frac{V_{1}}{8}+3 \frac{V_{1}}{8} & =0 \\
\frac{V_{1}}{2}+\frac{V_{1}}{8}+3 \frac{V_{1}}{8} & =8 \\
V_{1} & =8
\end{aligned}
$$

To find the short current $I_{s c}$ short the output terminals a and b .

Figure 55
When it is short circuited the current $I_{a}=0$ then dependent source becomes zero. The modified circuit is as shown in Figure 56.

$$
\begin{aligned}
\frac{V_{1}-24}{2}+4+I_{S C} & =0 \\
\frac{0-24}{2}+4+I_{S C} & =0 \\
I_{S C} & =-4+12=8 \mathrm{~A}
\end{aligned}
$$

Figure 56

$$
R_{T H}=\frac{8}{8}=1 \Omega
$$

Thevenin's Equivalent

Norton's Equivalent

Figure 57

Q 7) Find the Thevenin and Norton equivalent for the circuit shown in Figure 58 with respect terminals a-b

Figure 58
Solution:
Determine the Thevenin voltage $V_{T H}$ by apply node voltage method for the circuit shown in Figure 59

$$
\begin{aligned}
\frac{V_{1}}{2 k \Omega}+\frac{V_{2}}{40 k \Omega}-3 \times 10^{-3} & =0 \\
0.5 \times 10^{-3} V_{1}+0.025 \times 10^{-3} V_{2} & =3 \times 10^{-3} \\
0.5 V_{1}+0.025 V_{2} & =3
\end{aligned}
$$

It is observed that

$$
V_{a}=V_{1}
$$

$$
\begin{aligned}
V_{1}-V_{2} & =5 V_{a} \\
V_{1}-V_{2}-5 V_{a} & =0 \\
V_{1}-V_{2}-5 V_{1} & =0 \\
4 V_{1}+V_{2} & =0
\end{aligned}
$$

Solving following equations

$$
\begin{aligned}
0.5 V_{1}+0.025 V_{2} & =3 \\
4 V_{1}+V_{2} & =0
\end{aligned}
$$

$$
V_{1}=7.5 \mathrm{~V}, \quad V_{2}=-30 \mathrm{~V}
$$

Figure 59
Determine the short circuit current $I_{S C}$ for the circuit shown in Figure 60. It is observed that 40 $\mathrm{k} \Omega$ is also shorted hence entire current is flowing through shortened terminals AB .

$$
\begin{aligned}
& x=3 m A \\
& y=-x=-3 m A
\end{aligned}
$$

$$
V_{O C}=-30 V
$$

$$
Z_{T H}=\frac{V_{O C}}{I_{S C}}=\frac{-30 V}{-3 m A}=10 k \Omega
$$

Figure 60
Thevenin and Norton circuits are as shown in Figure 61

Figure 61

Q 8) Find the Thevenin and Norton equivalent for the circuit shown in Figure refThevenin-dependent8-1 with respect terminals a-b

Figure 62

Solution:

Determine the Thevenin voltage $V_{T H}$ by applying KVL for the circuit shown in Figure 63. It is observed that there is a current source between two loops, hence apply supermesh analysis.

$$
\begin{aligned}
y-x & =5 i=5 x \\
6 x-y & =0 \\
20 x+10 y & =20
\end{aligned}
$$

Solving the above equations

$$
x=0.25 A \quad y=1.5 A
$$

$$
V_{O C}=V_{T H}=1.5 A \times 8 \Omega=6 \mathrm{~V}
$$

Figure 63
Determine the $I_{S C}$ for the circuit shown in Figure 64.

$$
\begin{aligned}
y-x & =5 i=5 x \\
6 x-y & =0 \\
20 x+2 y & =20
\end{aligned}
$$

Solving the above equations

$$
x=0.625 A \quad y=3.75 A
$$

Figure 64

$$
Z_{T H}=\frac{V_{O C}}{I_{S C}}=\frac{6}{3.75}=1.6 \Omega
$$

Figure 65

Q 9) Find the Thevenin and Norton equivalent for the circuit shown in Figure 66 with respect terminals a-b

Figure 66
Solution:
Determine the Thevenin voltage $V_{T H}$ for circuit shown in Figure 67. It is observed that

$$
v_{1}=\frac{V_{C}}{5} \times 1=0.2 V_{C}
$$

Apply KCL

$$
\begin{aligned}
& \frac{V_{C}}{5}-2-\frac{v_{1}}{2}=0 \\
& \frac{V_{C}}{5}-2-0.2 \times \frac{V_{C}}{2}=0 \\
& 0.2 V_{C}-0.1 V_{C}=2 \\
& V_{C}=\frac{2}{0.1}=20 \\
& V_{O C}=V_{T H}=V_{C}+1 \times \frac{v_{1}}{2} \\
& =20+1 \times \frac{0.2 \times 20}{2} \\
& =22
\end{aligned}
$$

Figure 67

Applying KCL for the circuit shown in Figure 68.

$$
\begin{aligned}
V_{A}= & 0 V \\
\frac{V_{C}}{5}-2+\frac{V_{C}-V_{A}}{1} & =0 \\
0.2 V_{C}+1 V_{C} & =2 \\
V_{C} & =\frac{2}{1.2}=1.67 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
\frac{V_{A}-V_{C}}{1}-\frac{v_{1}}{2}+I_{S C} & =0 \\
\frac{-V_{C}}{1}-\frac{0.2 V_{C}}{2} & =-I_{S C} \\
\frac{1.67}{1}+\frac{0.2 \times 1.67}{2} & =I_{S C} \\
I_{S C}=1.67+0.167 & =1.837 A
\end{aligned}
$$

Figure 68

$$
Z_{T H}=\frac{V_{O C}}{I_{S C}}=\frac{22}{1.837 A}=12 \Omega
$$

Thevenin's Equivalent

Norton's Equivalent

Figure 69
By Test voltage method. Apply a test voltage of 1 V at the output terminals AB and determine the applied source current. The modified circuit is as shown in Figure 70.

Figure 70
It is observed that

$$
\begin{aligned}
v_{1} & =-1 x=-x \\
y-x & =\frac{v_{1}}{2}=\frac{-x}{2} \\
0.5 x-y & =0
\end{aligned}
$$

By supermesh analysis method

$$
\begin{aligned}
6 x+1 & =0 \\
x & =-\frac{1}{6}=-0167 A \\
y & =0.5 x=0.5 \times(-0167 A)=-0.0833 A
\end{aligned}
$$

The circuit impedance is

$$
Z_{T H}=\frac{1 V}{0.0833 A}=12 \Omega
$$

Q 9-1) Find the Thevenin and Norton equivalent for the circuit shown in Figure 71 with respect terminals a-b

Figure 71
Solution:
Determine the Thevenin voltage $V_{T H}$ for circuit shown in Figure 72. It is observed that

$$
v_{x}=\frac{V_{C}}{6} \times 3=0.5 V_{C}
$$

Apply KCL

$$
\begin{aligned}
& \frac{V_{C}}{6}-10-\frac{V_{x}}{4}=0 \\
& \frac{V_{C}}{6}-10-\frac{0.5 V_{C}}{4}=0 \\
& V_{C}(0.166-0.125)=10 \\
& 0.0416 V_{C}=10 \\
& V_{C}=240.38 \\
& V_{O C}=V_{T H}=V_{C}+5 \times \frac{V_{x}}{4} \\
&=240.38+5 \times \frac{0.5 V_{C}}{4} \\
&=240.38+5 \times \frac{0.5 \times 240.38}{4} \\
&=240.38+150=390.38
\end{aligned}
$$

Figure 72
Applying KCL for the circuit shown in Figure 73.

$$
V_{A}=0 V
$$

$$
\begin{aligned}
\frac{V_{C}}{6}-10+\frac{V_{C}-V_{A}}{5} & =0 \\
0.166 V_{C}+0.2 V_{C} & =10 \\
0.366 V_{C} & =10 \\
V_{C} & =\frac{10}{0.366}=27.27 \mathrm{~V}
\end{aligned}
$$

$$
\frac{V_{A}-V_{C}}{5}-\frac{V_{x}}{4}+I_{S C}=0
$$

$$
\frac{-V_{C}}{5}-\frac{0.5 V_{C}}{4}=-I_{S C}
$$

$$
\frac{27.27}{5}+\frac{0.5 \times 27.27}{4}=I_{S C}
$$

$$
I_{S C}=5.454+3.408=8.862 A
$$

Figure 73

$$
Z_{T H}=\frac{V_{O C}}{I_{S C}}=\frac{390.38}{8.862 A}=44 \Omega
$$

Figure 74

Q 10) Find the Thevenin equivalent for the circuit shown in Figure 75 with respect terminals a-b

Figure 75
Solution:
For this circuit it does not have any independent sources. Apply a test voltage of 1 V at the output terminals AB and determine the applied source current. The modified circuit is as shown in Figure 76.

Figure 76
It is observed that

$$
\begin{aligned}
i_{x} & =-\frac{V_{1}}{2} \\
& =-0.5 V_{1}
\end{aligned}
$$

Apply KCL for the node V_{1}

$$
\begin{aligned}
& +\frac{V_{1}}{4}+\frac{V_{1}}{2}+2 i_{x}-i_{o}=0 \\
& V_{1}[0.25+.5]+2\left(-0.5 V_{1}\right)-i_{o}=0 \\
& V_{1}[0.25+.5-1]-i_{o}=0 \\
& -0.25 V_{1}-i_{o}=0 \\
& -i_{o}=0.25 V_{1} \\
& R_{T H}=\frac{V_{1}}{i_{o}}=\frac{V_{1}}{0.25 V_{1}}=4 \Omega \\
& \text { Thevenin's Equivalent }
\end{aligned}
$$

Figure 77

Q 11) Find the Thevenin equivalent for the circuit shown in Figure 78 with respect terminals a-b

Figure 78
Solution:
Determine the Thevenin voltage $V_{T H}$ for circuit shown in Figure 79.

Figure 79

$$
x=5
$$

It is observed that

$$
\begin{aligned}
& v_{x}=4(x-y) \\
& v_{x}=20-4 y
\end{aligned}
$$

KVL for the mesh z

$$
\begin{aligned}
-2 v_{x}+2(z-y) & =0 \\
-2 y+2 z-2(20-4 y) & = \\
6 y+2 z & =40
\end{aligned}
$$

KVL for the mesh y

$$
\begin{aligned}
4(y-x)+2(y-z)+6 y & =0 \\
-4 x+12 y-2 z & =0 \\
-4 \times 5+12 y-2 z & =0 \\
-20+12 y-2 z & =0 \\
12 y-2 z & =20
\end{aligned}
$$

Solving the following linear equations

$$
\begin{gathered}
12 y-2 z=20 \\
6 y+2 z=40 \\
y=3.33 A x=10 A
\end{gathered}
$$

$$
V_{O C}=6 y=6 \times 3.33 A=20 V
$$

Short circuit the output terminals AB and determine the short circuit current $I_{S C}$

Figure 80

$$
x=5
$$

It is observed that

$$
\begin{aligned}
& v_{x}=4(x-y) \\
& v_{x}=20-4 y
\end{aligned}
$$

KVL for the mesh y

$$
\begin{aligned}
4(y-x)+2(y-z)+6 y-6 k & =0 \\
-4 x+12 y-2 z-6 k & =0 \\
-4 \times 5+12 y-2 z-6 k & =0 \\
-20+12 y-2 z-6 k= & 0 \\
12 y-2 z-6 k & =20
\end{aligned}
$$

KVL for the mesh z

$$
\begin{aligned}
2 z-2 y-2 v_{x} & =0 \\
-2 y+2 z-2(20-4 y) & =0 \\
-2 y+2 z-40+8 y & =0 \\
-2 y+2 z-2(20-4 y) & =0 \\
6 y+2 z+0 k & =40
\end{aligned}
$$

KVL for the mesh k

$$
-6 y+0 z+8 k=0
$$

Solving the following equations

$$
\begin{gathered}
12 y-2 z-6 k=20 \\
6 y+2 z+0 k=40 \\
-6 y+0 z+8 k=0 \\
y=4.44, z=6.667, k=3.333 \\
I_{S C}=k=3.333 \\
Z_{T H}=\frac{V_{T H}}{I_{S C}}=\frac{20}{3.333}=6 \Omega
\end{gathered}
$$

Alternative Method: To determine the short circuit current $I_{S C}$, apply a test voltage of 1 V at the output terminals AB and determine the applied source current i_{o}. The modified circuit is as shown in Figure 81.

Figure 81
It is observed that

$$
v_{x}=-4 y
$$

Apply KVL for the mesh x

$$
\begin{aligned}
-2 v_{x}+2(x-y) & =0 \\
v_{x} & =x-y \\
-4 y & =x-y \\
x & =-3 y
\end{aligned}
$$

Apply KVL for the mesh y

$$
\begin{aligned}
-2 x+12 y-6 z & =0 \\
-2(-3 y)+12 y-6 z & =0 \\
18 y-6 z & =0
\end{aligned}
$$

Apply KVL for the mesh z

$$
-6 y+8 z=-1
$$

Solving the following simultaneous equations

$$
\begin{gathered}
18 y-6 z=0 \\
-6 y+8 z=-1 \\
y=-0.055, z=-0.166 \\
i_{O}=-z=0.166 A \\
R_{T H}=\frac{V_{O}}{i_{O}}=\frac{1 V}{0.166 A}=6 \Omega
\end{gathered}
$$

The Thevenin and Norton circuits are as shown in Figure 82

Figure 82

Q 13) Find the Thevenin equivalent for the circuit shown in Figure 83 with respect terminals a-b

Figure 83

Solution:

$$
\begin{aligned}
10 I_{x}-6 I_{x}+20 & =0 \\
4 I_{x} & =-20 \\
I_{x} & =\frac{-20}{4}=-5 A \\
V_{O C} & =-5 A \times 6=-30 V
\end{aligned}
$$

Figure 84

$$
I_{x}=0
$$

$$
4 I_{x}+20=0
$$

$$
I_{x}=\frac{20}{4}=5 A
$$

$$
I_{S C}=5 A
$$

20 V

Thevenin's
Equivalent

Figure 86

Q 14) Find the Thevenin equivalent for the circuit shown in Figure 83 with respect terminals a-b

Figure 87
Solution:

$$
\begin{aligned}
7 x-20 & =0 \\
x & =\frac{20}{7}=2.857 A \\
V_{O C} & =x \times 2-12 \\
& =2.857 \times 2-12 \\
& =6.29 \mathrm{~V}
\end{aligned}
$$

Figure 88

$$
\begin{aligned}
Z_{T H} & =8+\frac{2 \times 5}{2 \times 5} \\
& =8+\frac{10}{7}=2.857 A \\
& =9.43 \Omega
\end{aligned}
$$

Figure 89

Figure 90
Q 15) For the circuit shown in Figure 91 Find the Thevenin and Norton equivalent circuit with respect terminals A-B

Solution:

Figure 91

Figure 92

$$
\begin{aligned}
V_{A} & =\frac{50 \angle 0^{\circ}}{5+j 2} \times j 2 \\
& =18.57 \angle 68.2^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
V_{B} & =\frac{50 \angle 90^{\circ}}{2-j 2} \times-j 2 \\
& =35.35 \angle 45^{\circ}
\end{aligned}
$$

$$
V_{A B}=V_{A}-V_{B}=18.57 \angle 68.2^{\circ}-35.35 \angle 45^{\circ}
$$

$$
=19.69 \angle-156^{\circ}
$$

$$
\begin{aligned}
& Z_{A B}=\frac{5 \times j 2}{5+j 2}+\frac{2 \times-j 2}{2-j 2} \\
& =(0.689+j 1.724)+(1-j 1)=1.689+j 0.724 \\
& I_{A B}=\frac{V_{A B}}{Z_{A B}+4} \\
&
\end{aligned} \begin{aligned}
&= 16.69 \angle 0^{-156} \\
& 1.689+j 0.724+4 \\
&=2.91 \angle-163.25^{\circ}
\end{aligned}
$$

Q 16) Find the Thevenin and Norton equivalent circuit between terminals A-B for the circuit shown in Figure 93.

Figure 93
Solution:

Figure 94

$$
\begin{aligned}
\frac{V_{A}-50}{5}+\frac{V_{A}}{j 5}+\frac{V_{A}}{2+j 3} & =0 \\
V_{A}[0.2-j 0.2+0.153-j 0.23] & =10 \\
0.353-j 0.43 & =10 \\
V_{A} & =\frac{10}{0.353-j 0.43} \\
& =18 \angle 50.6^{\circ}
\end{aligned}
$$

Figure 95

$$
\begin{aligned}
Z_{A B} & =\left[\left[\frac{5 \times j 5}{5+j 5}\right]+(2+j 3)\right] \| 6 \\
& =[(2.5+j 2.5)+(2+j 3)] \| 6 \\
& =[(4.5+j 5.5)] \| 6 \\
& =3.31+j 1.4=3.6 \angle 23^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
I_{N} & =\frac{V_{A}}{2+j 3}=\frac{18 \angle 50.6^{\circ}}{2+j 3} \\
& =14.99 \angle-5.71^{\circ}
\end{aligned}
$$

Q 17) Find the Thevenin and Norton equivalent circuit between terminals A-B for the circuit shown in Figure 96.

Figure 96
Solution:

Figure 97

$$
\begin{aligned}
I & =\frac{50 \angle 0^{\circ}-25 \angle 90^{\circ}}{8+j 1}=6.933 \angle-33.7^{\circ} \\
V_{A B} & =50 \angle 0^{\circ}-6.933 \angle-33.7^{\circ} \times(5+j 5) \\
& =9.79 \angle-78.65^{\circ}
\end{aligned}
$$

Figure 98

$$
\begin{aligned}
Z_{A B} & =\frac{(5+j 5) \times(3-j 4)}{8+j 1} \\
& =4.23-j 1.15 \Omega
\end{aligned}
$$

