Chapter 1

Module 1 Basic Concepts

1.1 Introduction

Module 1
Karnaugh maps: minimum forms of switching functions, two and three variable Karnaugh maps, four variable karnaugh maps, determination of minimum expressions using essential prime implicants, QuineMcClusky Method: determination of prime implicants, The prime implicant chart, petricks method, simplification of incompletely specified functions, simplification using map-entered variables

Two Variable K Map

1.1.1 Pairs, Quads, and Octets:

Pairs: Consider Four variable K-map as shown in Figure in which it contains a pair of 1's that are horizontally adjacent. These are called adjacent 1's, and these 1's can paired. This pairing eliminates one variable. Similarly it contains a pair of 1's that are vertically adjacent.

Figure 1.1

Figure 1.2

$$
\begin{aligned}
y_{1} & =\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D \\
& =\bar{A} \bar{B} \bar{C}(\bar{D}+D) \\
& =\bar{A} \bar{B} \bar{C} \\
y_{2} & =\bar{A} B C D+A B C D \\
& =B C D(\bar{A}+A) \\
& =B C D
\end{aligned}
$$

$$
\begin{aligned}
y_{1} & =\bar{A} B \bar{C} \bar{D} \bar{D}+\bar{A} B C \bar{D} \\
& =\bar{A} B \bar{D}(\bar{C}+C) \\
& =\bar{A} B \bar{D} \\
y_{2} & =\bar{A} \bar{B} C D+A \bar{B} C D \\
& =\bar{B} C D(\bar{A}+A) \\
& =\bar{B} C D
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=\bar{A} \bar{B} \\
& y_{2}=B D
\end{aligned}
$$

Figure 1.3

$$
\begin{aligned}
& y_{1}=\bar{C} D \\
& y_{2}=\bar{B} C
\end{aligned}
$$

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9
Prime implicants

- Prime Implicant: A prime implicant is a rectangle of $1,2,4,8, \ldots 1$ s or Xs not included in any one larger rectangle.
- Essential Prime Implicant: An essential prime implicant is a prime implicant that covers at least one 1 not covered by any other prime implicant. Dont cares (Xs) do not make a prime implicant essential.
- Redundant Prime Implicants: The prime implicants for which each of its minterm is covered by some essential prime implicant are redundant prime implicants (RPI)
- Selective Prime Implicants: The prime implicants for which are neither essential nor redundant prime implicants are called selective prime implicants (SPI)

1. Given $F=\sum(1,5,6,7,11,12,13,15)$, find number of implicant, PI, EPI, RPI and SPI.

Figure 1.10
From the above Figure 1.10

- No. of Implicants $=8(1,2,3,4,5,6,7,8)$
- No. of Prime Implicants(PI) $=5(1,2,3,4,5)$
- No. of Essential Prime Implicants(EPI) $=4(1,2,3,4)$
- No. of Redundant Prime Implicants(RPI) $=1$ (5)
- No. of Selective Prime Implicants(SPI) $=0$

2. Given $F=\sum(0,1,5,8,12,13)$, find number of implicant, PI, EPI, RPI and SPI.

Figure 1.11
From the above Figure 1.11

- No. of Implicants $=6(1,2,3,4,5,6)$
- No. of Prime Implicants(PI) $=5(1,2,3,4,5,6)$
- No. of Essential Prime Implicants(EPI) $=0$
- No. of Redundant Prime Implicants(RPI) $=0$
- No. of Selective Prime Implicants(SPI) $=0$

3. Given $F=\sum(0,1,5,7,15,14,10)$, find number of implicant, PI, EPI, RPI and SPI.

Figure 1.12
From the above Figure ??

- No. of Implicants $=3(1,2,3)$
- No. of Prime Implicants(PI) $=5(1,2,3,4,5,6)$
- No. of Essential Prime Implicants(EPI) $=2(1,6)$
- No. of Redundant Prime Implicants(RPI) $=2$
- No. of Selective Prime Implicants(SPI) $=2$

4. Given $F=\sum(0,1,4,5,9,11,13,15)$, find number of implicant, PI, EPI, RPI and SPI.

Figure 1.13

From the above Figure ??

- No. of Implicants $=6(1,2,3,4,5,6,7)$
- No. of Prime Implicants $(\mathrm{PI})=5(1,2,3,4,5,6)$
- No. of Essential Prime Implicants(EPI) $=2(1,6)$
- No. of Redundant Prime Implicants $($ RPI $)=2$
- No. of Selective Prime Implicants(SPI) $=2$

Minimize the following function for POS using K- map and realize it by using basic gates

$$
F(A, B, C, D)=\Pi M(0,6,7,8,12,13,14,15)
$$

$$
f(A, B, C, D)=(\bar{A}+\bar{B})(\bar{B}+\bar{C})(B+C+D)
$$

Figure 1.14
Minimize the following function for POS using K- map and realize it by using basic gates

$$
f(a, b, c, d)=\Pi M(0,1,6,8,11,12)+d(3,7,4,15)
$$

1.2 Module -1 VTU Question Papers

2020 Aug 18CS33
Q3 a) b.Minimize the following function for SOP using K- map and implement using basic gates:

$$
f(a, b, c, d)=\Pi M(5,7,13,14,15)+d(1,2,3,9)
$$

Solution:

$$
\begin{aligned}
f(a, b, c, d) & =\Pi M(5,7,13,14,15)+d(1,2,3,9) \\
& =\sum M(0,4,6,8,10,11,12)+d(1,2,3,9)
\end{aligned}
$$

$$
f(a, b, c, d)=\bar{b}+\bar{c} \bar{d}+\bar{a} c \bar{d}
$$

Figure 1.15

Figure 1.16
Q4 a) 2020 Aug 18CS33 b.Minimize the following function for POS using K- map and realize it using basic gates:

$$
f(a, b, c, d)=\Pi M(0,1,6,8,11,12)+d(3,7,4,15)
$$

Solution:

$$
f(a, b, c, d)=(a+b+c)(c+d)(\bar{c}+\bar{d})(a+\bar{b}+\bar{c})
$$

Figure 1.17

Figure 1.18
Q4 b) 2020 Aug 18CS33
Plot the following function on k-map (do not expand to minterm before plotting)

$$
f(A, B, C, D)=\bar{A} \bar{B}+C \bar{D}+A B C+\bar{A} \bar{B} \bar{C} \bar{D}+A B C \bar{D}
$$

Solution:

Figure 1.19
Q3 A) 2019 JAN 18CS33
Find minimum SOP and minimum POS expression for the following function using k-map

$$
f(A, B, C, D)=\sum m(1,3,4,11)+\sum d(2,7,8,12,14,15)
$$

Solution:

$$
f(A, B, C, D)=\bar{A} \bar{B} D+C D+B \bar{C} \bar{D}
$$

Figure 1.20

$$
\begin{aligned}
f(A, B, C, D) & =\sum m(1,3,4,11)+\sum d(2,7,8,12,14,15) \\
& =\prod m(0,5,6,9,10,13)+\sum d(2,7,8,12,14,15)
\end{aligned}
$$

Q3 A) 2019 July 17CS32
Use a Karnaugh map to find minimum SOP form for the following Boolean function

$$
f(A, B, C, D)=\sum m(0,2,3,5,6,7,8,9)+\sum d(10,11,12,13,14,15)
$$

Also draw the logic circuit diagram for the simplified SOP

Solution:

Figure 1.21
$f(A, B, C, D)=C+A \bar{C}+\bar{B} \bar{D}$

Figure 1.22

Q3 b) 2020 Aug 17CS32
Find the minimal sum and minimal product using a Karnaugh map

$$
f(A, B, C, D)=\sum m(6,7,9,10,13)+\sum d(1,4,5,11)
$$

Solution:

Minimal Sum

$$
f(A, B, C, D)=\bar{A} B+\bar{C} D+A \bar{B} C
$$

Figure 1.23

Minimal Product

$$
\begin{aligned}
f(A, B, C, D) & =\sum m(6,7,9,10,13)+\sum d(1,4,5,11) \\
& =\prod m(0,2,3,8,12,14,15)+\prod d(1,4,5,11)
\end{aligned}
$$

Figure 1.24

1.3 Quine McCluskey method

Quine McCluskey method

The minimization of boolean expressions is important to reduce the number of logic gates required to implement digital logic circuits. The K map method is used to simplify the boolean expressions. When the number of variables is greater than 5 its difficult to use K Map method. Quine-McCluskey algorithm is classical method for simplifying boolean expressions, which can handle any number of variables. When the number of input variables is greater than 5 , the tabular method for simplifying boolean expressions developed by Quine and McCluskey is used.

- Step 1: Convert the given minterms into its binary form.
- Step 2: Group the minterms according to the number of 1s
- Step 3: Compare elements of Group N with Group N+1. While comparing if they differ in only one position, then put a check mark and copy the terms in the next column. Place hyphen or dash in position of a minterm where they differ with each other.
- Step 4: Repeat the above Step 3 until no merging possible
- Step 5: Put all prime implicants in a cover table
- Step 6: Identify essential minterms, and hence essential prime implicants
- Step 7: Add prime implicants to the minimum expression until all minterms of are covered

1. Find the minimum SOP for the function $f(A, B, C, D)=\sum m(5,7,9,11,13,15)$ using Quine McCluskey method.

Solution:

Determination of prime implicants
Step 1:

- Given SOP contains maximum number of 15 , hence requires 4 digit binary number to represent the given SOP.
- Four variables A, B, C,D are used to represent in terms of binary.
- Given min terms are $5,7,9,11,13,15$, the details of the binary representation is as shown in Table 1.

Step: 2

- Minterms 5 and 9 contains 21 s , and are grouped into group no 2 .
- Minterms 7, 11 and 13 contains 3 1s, and are grouped into group no 3.
- Minterm 15 contains 41 s , and are grouped into group no 4.

Table 1

Min terms	A	B	C	D
5	0	1	0	1
7	0	1	1	1
9	1	0	0	1
11	1	0	1	1
13	1	1	0	1
15	1	1	1	1

Table 2

Group	Minterms	A	B	C	D	
2	5	0	1	0	1	\checkmark
	9	1	0	0	1	\checkmark
3	7	0	1	1	1	\checkmark
	11	1	0	1	1	\checkmark
	13	1	1	0	1	\checkmark
	13	1	1	1	1	\checkmark

Step: 3

- Compare the Group 2 minterms with Group 3 minterms.
- First compare minterm 5(0101) with Group 3 minterm $7(0111)$, it is differ only in one position i.e, $01-1$, hence minterms are grouped.
- Next minterm $5(0101)$ and $11(1011)$ is differ in two positions hence it is not possible group them.
- minterm $5(0101)$ with Group 3 minterm $13(1101)$, it is differ only in one position i.e, -101
- Compare the Group 3 minterms with Group 4 minterms.
- Minterm $7(0111)$ and $15(1111)$ is differ only in one position i.e, -111 , hence minterms are grouped.
- Minterm $11(1011)$ and $15(1111)$ is differ only in one position i.e, $1-11$, hence minterms are grouped.
- Minterm $13(1101)$ and $15(1111)$ is differ only in one position i.e, $11-1$, hence minterms are grouped.
- All the minterms in Table 2 are covered hence put tick mark
- The details are as shown in Table 3

Table: 3

Group						
Minterms	A	B	C	D		
2	5,7	0	1	-	1	\checkmark
	5,13	-	1	0	1	\checkmark
	9,11	1	0	-	1	\checkmark
	9,13	1	-	0	1	\checkmark
	7,15	-	1	1	1	\checkmark
	11,15	1	-	1	1	\checkmark
	13,15	1	1	-	1	\checkmark

Step: 4

- Compare the Group 2 minterms with Group 3 minterms in Table 3.
- Compare the Group 2 minterm 5, $7(01-1)$ with Group 3 minterm 7, 15 (-111), it is differ in two positions hence it is not possible to group them.
- Compare the Group 2 minterm 5, $7(01-1)$ with Group 3 minterm 11, 15 (1-01), it is differ in two positions hence it is not possible to group them.
- Compare the Group 2 minterm 5, $7(01-1)$ with Group 3 minterm $13,15(11-1)$, , it is differ only in one position i.e, $-1-1$, hence minterms are grouped.
- Compare the Group 2 minterm 5, 13(-101) with Group 3 minterm 7, 15 (-111), , it is differ only in one position i.e, $-1-1$, hence minterms are grouped.
- Compare the Group 2 minterm 5, 13(-101) with Group 3 minterm 11, 15 (1-11), it is differ in two positions hence it is not possible to group them.
- Compare the Group 2 minterm 5, 13(-101) with Group 3 minterm 13, 15 (11-1), it is differ in two positions hence it is not possible to group them.
- Continue the same steps for remaining Group 2 minterms with Group 3 minterms.
- All the minterms in Table 3 are covered hence put tick mark
- The details are as shown in Table 4
Table: 4

Group	Minterms	A	B	C	D
2	$5,7,13,15$	-	1	-	1
	$5,13,7,15$	-	1	-	1
	$9,11,13,15$	1	-	-	1
	$9,13,11,15$	1	-	-	1

Step: 5
Minterms $(5,7,13,15)(5,13,7,15)$ are having variables as $-1-1$, this is represented as BD and similarly minterms $(9,11,13,15)(9,13,11,15)$ are having variables as $1--1$, this is represented as AD.

Put all prime implicants in a table as shown in Table 5. Column 1 contains Prime implicants, column 2 corresponding decimal numbers and column given minterms. Put X mark wherever the minterms are covered.

The prime implicant chart

Table: 5

P.I	Decimal	Minterms					
		5	7	9	11	13	15
$B D$	$5,7,13,15$	X	X			X	X
$A D$	$9,11,13,15$			X	X	X	X

Step 6: Identify the essential minterms, and hence essential prime implicants. 5, 7, 9,11 are the essential minterms.

Table: 6

P.I	Decimal	Minterms						
		5	7	9	11	13	15	
$B D$	$5,7,13,15$	X	X			X	X	
$A D$	$9,11,13,15$			X	X	X	X	

Step 7: Based on essential prime implicants write the expression.

$$
\begin{aligned}
Y & =B D+A D \\
& =D(A+B)
\end{aligned}
$$

Step 8: Result can also be verified by K map method. Given function is $f(A, B, C, D)=$ $\sum m(5,7,9,11,13,15)$

Figure 1.25
2. Find the minimum SOP for the function $f(A, B, C, D)=\sum m(0,1,3,7,8,9,11,15)$ using Quine McCluskey method.

Solution:

Table 1

Min terms	A	B	C	D	
0	0	0	0	0	
1	0	0	0	1	
3	0	0	1	1	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
11	1	0	1	1	
15	1	1	1	1	

Step: 2

Group	Minterms	A	B	C	D	
0	0	0	0	0	0	\checkmark
1	1	0	0	0	1	\checkmark
	8	1	0	0	0	\checkmark
2	3	0	0	1	1	\checkmark
	9	1	0	0	1	\checkmark
3	7	0	1	1	1	\checkmark
	11	1	0	1	1	\checkmark
4	15	1	1	1	1	\checkmark

Table: 3

Group	Minterms	A	B	C	D
0	0,1	0	0	0	-
	0,8	-	0	0	0
	1,3	0	0	-	1
	1,9	-	0	0	1
	8,9	1	0	0	-
3	3,7	0	-	1	1
	3,11	-	0	0	1
	9,11	-	0	1	1
	7,15	-	1	1	1
	11,15	1	-	1	1

Table: 4

Group	Minterms	A	B	C	D
0	$0,1,8,9$	-	0	0	-
	$0,8,1,9$	-	0	0	-
1	$1,3,9,11$	-	0	-	1
	$1,9,3,11$	-	0	-	1
2	$3,7,11,15$	-	-	1	1
	$3,11,7,15$	-	-	1	1

Table: 5

P.I	Decimal	Minterms							
		0	1	3	7	8	9	11	15
$\bar{B} \bar{C}$	$0,1,8,9$	X	X			X	X		
$\bar{B} D$	$1,3,9,11$		X	X			X	X	
$C D$	$3,7,11,15$			X	X			X	X

$$
Y=\bar{B} \bar{C}+C D
$$

Figure 1.26
3. Find the minimum SOP for the function $f(A, B, C, D)=\sum m(0,1,2,5,6,7,8,9,10,14)$ using Quine McCluskey method.

Solution:

Table 1

Min terms	A	B	C	D	
0	0	0	0	0	\checkmark
1	0	0	0	1	\checkmark
2	0	0		1	\checkmark
5	0	0	1	1	\checkmark
6	0	0	0	1	\checkmark
7	0	1	1	1	\checkmark
8	1	0	0	0	\checkmark
9	1	0	0	1	\checkmark
10	1	0	1	1	\checkmark
14	1	1	1	1	

Step: 2

Group	Minterms	A	B	C	D
0	0	0	0	0	0
1	1	0	0	0	1
	2	0	0	1	0
	8	1	0	0	0
	5	0	0	0	1
	6	0	1	1	0
	9	1	0	0	1
	10	1	0	1	0
	7	0	1	1	1
	14	1	1	1	0

Table: 3

Group	Minterms	A	B	C	D	
0	0,1	0	0	0	-	\checkmark
	0,2	0	0	-	0	\checkmark
	0,8	-	0	0	0	\checkmark
	1,5	0	-	0	1	
	1,9	-	0	0	1	\checkmark
	2,6	0	-	1	0	\checkmark
	2,10	0	-	1	0	\checkmark
	8,9	1	0	0	-	\checkmark
	8,10	1	0	-	0	\checkmark
	5,7	0	1	-	1	
	6,7	0	1	1	-	
	6,14	-	1	1	0	\checkmark
	10,14	1	-	1	0	\checkmark

Table: 4

Group	Minterms	A	B	C	D
0	$0,1,8,9$	-	0	0	-
	$0,2,8,10$	-	0	-	0
	$0,8,1,9$	-	0	0	-
	$0,8,2,10$	-	0	-	0
1	$2,6,10,14$	-	0	1	0
	$2,10,6,14$	-	0	1	0

P.I	Decimal	Minterms									
		0	1	2	5	6	7	8	9	10	14
$\bar{B} \bar{C}$	$0,1,8,9$	X	X					X	X		
$\bar{B} \bar{D}$	$0,2,8,10$	X		X				X		X	
$C \bar{D}$	$2,6,10,14$			X		X				X	X
$\bar{A} \bar{C} \bar{D}$	1,5		X		X						
$\bar{A} B D$	5,7				X		X				
$\bar{A} B C$	6,7					X	X				

$$
Y=\bar{B} \bar{C}+C \bar{D}+\bar{A} B D
$$

Figure 1.27
4. Find the minimum SOP for the function $f(A, B, C, D)=\sum m(0,2,3,6,7,8,10,12,13)$ using Quine McCluskey method.

Solution:

Table 1

Min terms	A	B	C	D	
0	0	0	0	0	\checkmark
2	0	0	1	0	\checkmark
3	0	0	1	1	\checkmark
6	0	1	1	0	\checkmark
7	0	1	1	1	\checkmark
8	1	0	0	0	\checkmark
10	1	0	1	1	\checkmark
12	1	1	0	0	\checkmark
13	1	1	0	1	

Step: 2

Group	Minterms	A	B	C	D	
0	0	0	0	0	0	\checkmark
1	2	0	0	0	1	\checkmark
	8	1	0	0	0	\checkmark
	3	0	0	0	1	\checkmark
	6	0	1	1	0	\checkmark
	10	1	0	1	0	\checkmark
	12	1	1	0	0	\checkmark
3	7	0	1	1	1	\checkmark
	13	1	1	0	1	\checkmark

Table: 3

Group	Minterms	A	B	C	D	
0	0,2	0	0	-	0	\checkmark
	0,8	-	0	0	0	\checkmark
	2,3	0	0	1	-	\checkmark
	2,6	0	-	1	0	\checkmark
	2,10	-	0	1	0	\checkmark
	8,10	1	0	-	0	\checkmark
	8,12	1	-	0	0	
2	3,7	0	-	1	1	\checkmark
	6,7	0	1	1	-	\checkmark
	12,13	1	1	0	-	

Table: 4

Group	Minterms	A	B	C	D
0	$0,2,8,10$	-	0	-	0
1	$2,3,6,7$	0	1	1	0
	8,12	1	-	0	0
	12,13	1	1	0	-

P.I	Decimal	Minterms									
		0	2	3	6	7	8	10	12	13	
$\bar{B} \bar{D}$	$0,2,8,10$	X	X				X	X			
$\bar{A} C$	$2,3,6,7$		X	X	X	X					
$A C \bar{D}$	8,12						X		X		
$A B \bar{C}$	12,13								X	X	

$$
Y=\bar{B} \bar{D}+\bar{A} C+A B \bar{C}
$$

Figure 1.28

1.4 Simplification of incompletely specified functions

Simplification of incompletely specified functions

1. Find the minimum SOP for the function $f(A, B, C, D)=\sum m(0,3,5,6,7,10,12,13)+\sum d(2,9,15)$ using Quine McCluskey method.

Solution:

Determination of prime implicants
Step 1:

- Given SOP contains maximum number of 15 , hence requires 4 digit binary number to represent the given SOP.
- Four variables A, B, C,D are used to represent in terms of binary.
- Given min terms are $0,3,5,6,7,10,12,13$. The details of the binary representation is as shown in Table 1.
- Given Don't cares are 2, 9, 15. The details of the binary representation is as shown in Table 2.

Table 1 for minterms

Min terms	A	B	C	D
0	0	0	0	0
3	0	0	1	1
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
10	1	0	1	0
12	1	0	1	0
13	1	1	0	1

Table 2 for don't cares

Min terms	A	B	C	D
2	0	0	1	0
9	1	0	0	1
15	1	1	1	1

Step: 2

- Club the minterms and don't cares and grouped together based on the content of number of 1 s
- Minterms 0 is grouped into group no 0 .
- Minterms 2 contains 11 s , and is grouped into group no 1 .
- Minterms 3, 5, 6, 9, 10 and 12 contains 21 s , and are grouped into group no 2 .
- Minterms 7 and 13 contains 31 s , and are grouped into group no 3 .
- Minterm 15 contains 41 s , and are grouped into group no 4.
- The details are as shown in Table 3

Table 4

Group	Minterms	A	B	C	D	
0	0,2	0	0	-	0	
1	2,3	0	0	1	-	\checkmark
	2,6	0	-	1	0	\checkmark
	2,10	-	0	1	0	
	3,7	0	-	1	1	\checkmark
	5,7	0	1	-	1	\checkmark
	5,13	-	1	0	1	\checkmark
	6,7	0	1	1	-	\checkmark
	9,13	1	-	0	1	
	12,13	1	1	1	-	
	12	1	1	0	-	\checkmark
3	7,15	-	1	1	1	\checkmark
	13,15	1	-	1	\checkmark	

Table: 5

Group	Minterms	A	B	C	D
1	$2,3,6,7$	0	-	1	-
	$2,6,3,7$	0	-	1	-
2	$5,7,13,15$	-	1	-	1
	$5,13,7,15$	-	1	-	1

Table: 4

Group	Minterms	A	B	C	D
0	0,2	0	0	-	0
	$2,3,6,7$	0	-	1	-
	2,10	-	0	1	0
2	$5,7,13,15$	-	1	-	1
	9,13	1	-	0	1
	12,13	1	1	0	-

Step: 5
Minterms $(0,2)$ is having variable $\bar{A} \bar{B} \bar{D}(2,3,6,7)$ is having variables as $0-1-$, this is represented as $\bar{A} C(2,10)$ is having variables as -010 is represented as $\bar{B} C \bar{D}(5,7,13,15)$ is having variables as $-1-1$ is represented as $\mathrm{BD}, 9,13$ is having variables as $1-01$ is represented as $A \bar{C} D$ and similarly minterms $(12,13)$ is having variables as $110-$, this is represented as $A B \bar{C}$.

Put all prime implicants in a table as shown in Table 5. Column 1 contains Prime implicants, column 2 corresponding decimal numbers and column given minterms. Put X mark wherever the minterms are covered.

The prime implicant chart
Table: 6

P.I	Decimal	Minterms								
		0	3	5	6	7	10	12	13	
$\bar{A} \bar{B} \bar{D}$	0,2	X								
$\bar{A} C$	$2,3,6,7$		X		X	X				
$\bar{B} C \bar{D}$	2,10						X			
$B D$	$5,7,13,15$			X		X			X	
$A \bar{C} D$	9,13								X	
$A B \bar{C}$	12,13							X	X	

Step 6: Identify the essential minterms, and hence essential prime implicants. 5, 7, 9,11 are the essential minterms.

Table: 7

P.I	Decimal	Minterms									
		0	3	5	6	7	10	12	13		
$\bar{A} \bar{B} \bar{D}$	0,2	X									
$\bar{A} C$	$2,3,6,7$		X		X	X					
$\bar{B} C \bar{D}$	2,10						X				
$B D$	$5,7,13,15$			X		X			X		
$A \bar{C} D$	9,13								X		
$A B \bar{C}$	12,13							X	X		

Step 7: Based on essential prime implicants write the expression.

$$
Y=\bar{A} \bar{B} \bar{D}+\bar{A} C+\bar{B} C \bar{D}+B D+A B \bar{C}
$$

Step 8: Result can also be verified by K map method. Given function is $f(A, B, C, D)=$ $\sum m(0,3,5,6,7,10,12,13)+\sum d(2,9,15)$

Figure 1.29
2. Find the minimum SOP for the function $f(A, B, C, D)=\sum m(2,3,7,9,11,13)+\sum d(1,10,15)$ using Quine McCluskey method.

Solution:

Determination of prime implicants
Step 1:

- Given SOP contains maximum number of 15 , hence requires 4 digit binary number to represent the given SOP.
- Four variables A, B, C,D are used to represent in terms of binary.
- Given min terms are $2,3,7,9,11,13$. The details of the binary representation is as shown in Table 1.
- Given Don't cares are 1, 10, 15. The details of the binary representation is as shown in Table 2.

Step: 2

- Club the minterms and don't cares and grouped together based on the content of number of 1 s
- Minterms 0 is grouped into group no 0 .
- Minterms 2 contains 1 1s, and is grouped into group no 1.
- Minterms 3, 5, 6, 9, 10 and 12 contains 21 s , and are grouped into group no 2 .
- Minterms 7 and 13 contains 3 s, and are grouped into group no 3.
- Minterm 15 contains 4 1s, and are grouped into group no 4.
- The details are as shown in Table 3

Table 4

Group	Minterms	A	B	C	D	
1	1,3	0	0	-	1	\checkmark
	1,9	-	0	0	1	\checkmark
	2,3	0	0	1	-	\checkmark
	2,10	-	0	1	0	\checkmark
	3,7	0	-	1	1	\checkmark
	3,11	-	0	1	1	\checkmark
	9,11	1	0	-	1	\checkmark
	9,13	1	-	0	1	\checkmark
	10,11	1	0	1	-	\checkmark
	7,15	-	1	1	1	\checkmark
	11,15	1	-	1	1	\checkmark
	13,15	1	1	-	1	\checkmark

Table: 5

Group	Minterms	A	B	C	D
1	$1,3,9,11$	-	0	-	1
	$2,3,10,11$	-	0	1	-
2	$3,7,11,15$	-	-	1	1
	$9,11,13,15$	1	-	-	1

Step: 5
Minterms $(1,3,9,11)$ is having variable $-0-1 \bar{B} D,(2,3,10,11)$ is having variables as $-01-$, this is represented as $\bar{B} C(3,7,11,15)$ is having variables as - -11 is represented as $C D(9,1,13,15)$ is having variables as $1--1$ is represented as AD

Put all prime implicants (excluding don't cares) in a table as shown in Table 6. Column 1 contains Prime implicants, column 2 corresponding decimal numbers and column given minterms. Put X mark wherever the minterms are covered.

The prime implicant chart
Table: 6

P.I	Decimal	Minterms						
		2	3	7	9	11	13	
$\bar{B} D$	$1,3,9,11$		X		X	X		
$\bar{B} D$	$2,3,10,11$	X	X			X		
$C D$	$3,7,11,15$		X	X		X		
$A D$	$9,11,13,15$				X	X	X	

Step 6: Identify the essential minterms, and hence essential prime implicants. 5, 7, 9,11 are the essential minterms.

Table: 6

P.I	Decimal	Minterms					
		2	3	7	9	11	13
$\bar{B} D$	$1,3,9,11$		X		X	X	
$\bar{B} C$	$2,3,10,11$	X	X			X	
$C D$	$3,7,11,15$		X	X		X	
$A D$	$9,11,13,15$				X	X	X

Step 7: Based on essential prime implicants write the expression.

$$
Y=\bar{B} C+C D+A D
$$

Figure 1.30

