
0.1. Module 2

0.1 Module 2

Gram-schmidt-procedure

0.1.1 Model of digital communication system

• Conceptualized model of digital communication system is as shown in Figure ??

• Consider a source that emits one symbol for every T seconds, with the symbols belonging to an
alphabet of M symbols which are denoted as m1,m2, . . .mM .

• Consider an example of quaternary signaling scheme with an alphabet consists of four possible
symbols: 00,01,10,11.

• By assuming that, all M symbols of the alphabet are equally likely. Then a priori probability of the
message source output as

pi = P (mi emitted) =
1

M
for all i

Message
source

Waveform
Channel

Vector
transmitter Modulator

Vector
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Figure 1: Model of Digital Communication System

• The output of the message source is presented to a vector transmitter producing vector of real
number and source output is represented as

si =



si1
si2
.
.
.
siN

 , i = 1, 2,....,M

sij =

∫ T

0
si(t)φj(t)dt,

{
i = 1, 2,....,M
j = 1, 2,....,N

}
• The signal si(t) is necessarily of finite energy i.e., Ei =

∫ T
0 s2i (t)dt i = 1, 2, . . .M

The Channel is assumed to have two characteristics:

1. Channel is linear, with a bandwidth that is large enough to accommodate the transmission of the
modulator output si(t) without distortion.

2. The transmitted signal si(t) is perturbed by an additive, zero-mean, stationary, white, Gaussian
noise process W (t). Such a channel is referred as AWGN ( additive white Gaussian noise ) channel
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0.1. Module 2

If si(t) is transmitted, then the received signal x(t) is
represented as

x(t) = si(t) + w(t)

{
0 ≤ t ≤ T
1 ≤ i ≤M

}
where w(t) is the white noise process

Transmitted
signal ( )iS t

White Gaussian
noise w(t)

Received
signal ( )x t

Figure 2: Model of AWGN Channel

0.1.2 Geometric Representation of Signals

• Real value energy signals s1(t), s2(t), ..sM (t), each of duration T sec

si(t) =

N∑
j=1

sijφj(t),

{
0 ≤ t ≤ T
i == 1, 2,....,M

}
(5.5)

• where the coefficients can be defined using:

sij =

∫ T

0
si(t)φj(t)dt,

{
i = 1, 2,....,M
j = 1, 2,....,M

}
• Real-valued basis functions

T∫
0

φi(t)φj(t)dt = δij =

{
1 ifi = j
0 ifi 6= j

}
(5.7)

• i.e φ1(t), φ2(t), . . . φN (t), are orthogonal to each other in the interval 0 ≤ t ≤ T . The set of coefficients
can be viewed as a N-dimensional vector, denoted by Si, where Si has a one-to-one relationship with
the transmitted signal Si(t)

• Each signal in the set s1(t) is completely determined by the vector of its coefficients

si =



si1
si2
.
.
.
siN

 , i = 1, 2,....,M

For the N elements of vectors si1, si2, siN are the input si(t) is generated based on Equation 6 it is
represented as shown in Figure 3

Similarly for the given signals si(t) i = 1, 2, , ,M as input and based on Equation 7 Figure ?? maybe
used to generate coefficients

1( )tφ

1( )iS t

( )N tφ

( )iNS t

2 ( )tφ

2 ( )iS t ( )iS t

Figure 3: Scheme for generating signal si(t)
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0
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Figure 4: Scheme for generating set of
coefficients {sij}
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0.1. Module 2

Relation between signal energy and its vector

The inner product or dot product of signal si with itself is

||si||2 = sTi si = [si1si2 . . . siN ]



si1
si2
.
.
.
siN

 = s2i1,+s
2
i2 . . .+ s2in] =

N∑
j=1

s2ij

Ei =

T∫
0

s2i (t)dt =

T∫
0

 N∑
j=1

sij(t)φj(t)

[ N∑
k=1

sik(t)φk(t)

]
dt

=
N∑
j=1

N∑
k=1

sijsik

T∫
0

φj(t)φk(t)

Ei =

N∑
j=1

s2ij = ‖si‖2

• Assume we have a pair of signals: si(t) and sj(t), each represented by its vector, Then:

• The Euclidean distance between two points represented by vectors (signal vectors) is equal to ||si−sk||
and the squared value is given by:

‖si − sk‖2 =

N∑
j=1

(sij − skj)2 =

∫ T

0
[si(t)− sk(t)]1/2dt

0.1.3 Gram-schmidt Orthogonalization procedure

• Transmitter takes the symbol (data) mi i = 1, 2 . . .M (digital message source output) and encodes
it into a distinct signal si(t).

• The set of M energy signals {si(t)} can be represented by a linear combination of N orthonormal
basis functions where N ≤M .

• The given set of real valued energy signals s1(t), s2(t), ..sM (t), each of duration T sec are represented
as

s1(t) = s11φ1(t) + s12φ2(t) . . . s1NφN (t) (1)

s2(t) = s21φ1(t) + s22φ2(t) . . . s2NφN (t) (2)

s3(t) = s31φ1(t) + s32φ2(t) . . . s3NφN (t) (3)

sM (t) = sM1φ1(t) + sM2φ2(t) . . . sMNφN (t) (4)

(5)

si(t) =

N∑
j=1

sijφj(t),

{
0 ≤ t ≤ T
i = 1, 2,....,M

}
(6)

where the coefficients are defined as:

sij =

∫ T

0
si(t)φj(t)dt,

{
i = 1, 2,....,M
j = 1, 2,....,N

}
(7)
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0.1. Module 2

Gram-Schmidt Orthogonalization Procedure
Step 1:
For Equation set all coefficients sij = 0 except s11. Then

s1(t) = s11φ1(t) ∴ φ1(t) =
s1(t)

s11
(8)

∫ T

0
φ21(t)dt = 1 =

∫ T

0

s21(t)

s211
dt ∴ s11 =

√∫ T

0
s21(t)dt (9)

s11 φ1(t) are estimated.
Step 2:
Set all coefficients sij = 0 except s21 and s22 to zero. Then

s2(t) = s21φ1(t) + s22φ2(t) (10)

Multiply both sides by φ1(t) and integrating

s2(t)φ1(t) = s21φ1(t)φ1(t) + s22φ2(t)φ1(t) (11)

s21 =

∫ T

0
s2(t)φ1(t)dt (12)

s2(t)− s21φ1(t) = s22φ2(t) (13)

Squaring and integrating ∫ T

0
[s2(t)− s21φ1(t)]2dt =

∫ T

0
s222φ

2
2(t) = s222 (14)

s22 =

√∫ T

0
[s2(t)− s21φ1(t)]2dt (15)

φ2(t) =
s2(t)− s21φ1(t)

s22
(16)

Step 3:
Set all coefficients sij = 0 except s31,s32 and s33 to zero. Then

s3(t) = s31φ1(t) + s32φ2(t) + s33φ3(t) (17)

Multiply both sides by φ1(t) and integrating

s3(t)φ1(t) = s31φ1(t)φ1(t) + s32φ2(t)φ1(t) + s33φ3(t)φ1(t) (18)

s31 =

∫ T

0
s3(t)φ1(t)dt similarly s32 =

∫ T

0
s3(t)φ2(t)dt (19)

s233 =

∫ T

0
[s3(t)− s31φ1(t)− s32φ2(t)]2 dt (20)

s33 =

√∫ T

0
[s3(t)− s31φ1(t)− s32φ2(t)]2 dt (21)

φ3(t) =
s3(t)− s31φ1(t)− s32φ2(t)

s33
(22)

Continuing in the same steps to find N orthonormal basis functions φ1(t), φ2(t), . . . φN (t), and estimating
the coefficients sij . Based on N orthonormal basis functions and coefficients the signals si(t) are expressed
in linear combination of orthonormal basis functions.
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0.2. Response of bank of correlators to noisy input

0.2 Response of bank of correlators to noisy input

Received Signal X(t) is given by

X(t) = si(t) +W (t) 0 ≤ t ≤ T 1 ≤ i ≤M

where W(t) is AWGN with Zero Mean and PSD N0/2. Output of each correlator is a random variable
defined by

Xj =

∫ T

0
X(t)φj(t)dt = Sij + wj(t) =

∫ T

0
[si(t) +W (t)]φj(t)dt = Sij + wj(t) 1 ≤ j ≤ N

The first Component Sij(t) is deterministic quantity contributed by the transmitted signal Si(t), it is
defined by

Sij =

∫ T

0
Si(t)φj(t)dt

The second Component Wj is a random variable due to the presence of the noise at the input, it is defined
by

Wj =

∫ T

0
W (t)φj(t)dt

Mean and variance:
The noise process W(t) has zero mean. The mean value of he jth correlator output depends only on

Sij hence mean is

mXj = E[Xj ] = E[Sij +Wj ] = SijE[Wj ] = Sij

Variance:

σ2Xj
= V ar[Xj ] = E[(Xj − Sij)2] = E[W 2

j ]

σ2Xj
= E

[∫ T

0
W (t)φj(t)dt

∫ T

0
W (u)φj(u)du

]
= E

[∫ T

0

∫ T

0
φj(t)φj(u)W (t)W (u)dt du

]
=

∫ T

0

∫ T

0
φj(t)φj(u)E [W (t)W (u)] dt du

=

∫ T

0

∫ T

0
φj(t)φj(u)Rw(t, u)dt du

where Rw(t, u) is autocorrelation function of the noise process which is stationary and depends only
on the time difference (t − u) Noise process is is W (t) is white with power spectral density N0

2 , which is
expressed as

Rw(t, u) =
N0

2
δ(t− u)

where δ(t− u)) is a Dirac delta function

σ2Xj
=
N0

2

∫ T

0

∫ T

0
φj(t)φj(u)δ(t− u)dt du =

N0

2

∫ T

0
φ2j (t)dt

φj(t) has unit energy i.e., φ2j (t) = 1 Then Variance becomes

σ2Xj
=
N0

2
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0.2. Response of bank of correlators to noisy input

The set φj(t) is orthonormal set, then the Xj are mutually uncorrelated and is given by

Cov[Xj , Xk] = E[(Xj −mXj )(Xk −mXj )] = E[(Xj − sij)(Xk − sij)] = E[WjWk]

= E

[∫ T

0
W (t)φj(t)dt

∫ T

0
W (u)φk(u)du

]
=

∫ T

0

∫ T

0
φj(t)φk(u)Rw(t, u)(u)dt du

=
N0

2

∫ T

0

∫ T

0
φj(t)φk(u)δ(t− u)dt du =

N0

2

∫ T

0
φj(t)φk(u)dt

= 0 j 6= k

The correlator output is defined as N random variables

X =



X1

X2

.

.

.
XN


whose elements are independent Gaussian random variables with mean sij and variance N0/2. The
elements of the vector X are statistically independent, and can be expressed as the conditional probability
density function of the vector X, given that the signal si(t) was transmitted as the product of conditional
probability density function of its individual elements and is written as

fX(X|mi) =
N∏
j=1

fXj (Xj |mi)

fXj (Xj |mi) =
1√
πN0

exp

[
− 1

N0
(xj − sij)

]
1 ≤ j ≤ N 1 ≤ i ≤M

fX(X|mi) = (πN0)
−N0/2

− 1

N0

N∑
j=1

(xj − sij)2
 1 ≤ i ≤M
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0.3. Problems

0.3 Problems

0.3.1 Problems

Problem 1: Consider the three waveforms fn(t)shown in Fig Show that these waveforms are orthonormal.

0

1( )f t
1
2

1
2

−

42
t

0 1   2   3    4

3 ( )f t
1
2

1
2

−

t
0

2 ( )f t
1
2

42
t

Solution:

C12 =

∫ ∞
−∞

f1(t)f2(t)dt =

∫ 4

0
f1(t)f2(t)dt

=

∫ 2

0
f1(t)f2(t)dt+

∫ 4

2
f1(t)f2(t)dt

=

∫ 2

0

1

2

1

2
dt+

∫ 4

2

1

2
×−1

2
dt

=
1

4

∫ 2

0
dt− 1

4

∫ 4

2
dt

=
1

4
× 2− 1

4
× (4− 2) = 0

C13 =

∫ 4

0
f1(t)f3(t)dt

=

∫ 1

0

1

2
dt−

∫ 2

1

1

4
dt−

∫ 3

2

1

4
dt4 +

∫ 4

3

1

4
dt

= 0

C23 =

∫ 4

0
f2(t)f3(t)dt

=

∫ 1

0

1

2
dt−

∫ 2

1

1

4
dt+

∫ 3

2

1

4
dt−

∫ 4

3

1

4
dt

= 0∫ ∞
−∞
|fi(t)|2dt = 1 i = 1, 2, 3

Problem 2: Check whether the signals φ1(t) and φ2(t) are orthogonal. Obtain corresponding
orthonormal functions. Express the given signals s1(t) s2(t) and s3(t) in terms of φ1(t) and φ2(t)

t
t

0

2 ( )tφ

1

1−

21 0      1 0     1         2

2 ( )s t

t

2−

1( )s t

2

t

3( )s t

2

t0     1         20

1( )tφ

1

2

Solution:

C12 =

∫ 2

0
φ1(t)φ2(t)dt

=

∫ 1

0
(1)(1)dt+

∫ 2

1
(1)(−1)dt = 0

∫ 2

0
φ21(t)dt =

∫ 2

0
φ22(t)dt = 2∫ 2

0
φi(t)φj(t) =

{
0 i 6= j
2 i = j

Corresponding orthonormal functions are

φ1(t)√
2

and
φ2(t)√

2
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From the figure it is observed that

s1(t) = φ1(t) + φ2(t)

s2(t) = −φ1(t) + φ2(t)

s3(t) = φ1(t)− φ2(t)

Problem 3: Three signals s1(t) s2(t) and s3(t) are as shown in Figure. Apply Gram-Schmidt procedure
to obtain and orthonormal basis functions for the signals. Express the signals s1(t) s2(t) and s3(t) in terms
of orthonormal basis functions. Also give the signal constellation diagram.

0         2       4

1( )s t

3

0         2       4

3( )s t

3

0         2

2 ( )s t

3

Solution:

s1(t) = s11φ1(t)∫ 4

0
s21(t)dt = 9× 4 = 36 = s211

φ1(t) =
s1(t)

s11
=
s1(t)

6
=

1

2

s2(t) = s21φ1(t) + s22φ2∫ T

0
s2tφ1(t)dt =

∫ 2

0
3× 1

2
dt

=
3

2
× 2 = 3 = s21

s22φ2(t) = s2(t)− s21φ1(t)∫ T

0
s222φ

2
2(t)dt = s222 =

∫ T

0
(s2(t)− 3φ1(t))

2dt

s222 =

∫ 2

0
s22(t)dt+

∫ 4

0
9φ21(t)dt−2

∫ 2

0
3s2(t)φ1(t)dt = 9

s22 = 3

φ2(t) =
1

3
[s2(t)− s22φ1(t)] =

1

3
[3− 3

1

2
] =

1

2

From the figure it is observed that s3(t) =
s1(t) − s2(t) Expressing the signals in terms
of basis functions

s1(t) = φ1(t)× 6

s2(t) = φ1(t)× 6 + φ2(t)× 3

s3(t) = 3× φ1(t)− 3× φ2(t)

Problem 4: Consider the signals s1(t), s2(t), s3(t), and s4(t) are as shown in Figure. Apply Gram-
Schmidt procedure to obtain and orthonormal basis functions for the signals.

0

1( )s t

1

3
T 0

2 ( )s t

1

2
3
T 0

3( )s t

1

T
3
T 0

4 ( )s t

1

T

Solution:
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0.3. Problems

E1 =

∫ T

0
s21(t)dt =

∫ T/3

0
12dt = T/3

φ1(t) =
s1(t)√
E1

=
1√
T/3

=
√

3/T

s21 is

s21 =

∫ T

0
s2t(t)φ1(t)dt

=

∫ T/3

0
1
√

3/Tdt =
√

3/T

E2 =

∫ T

0
s22tdt =

∫ 2T/3

0
(1)2dt

=
2T

3

φ2(t) =
s2(t)− s21φ1(t)√

E2 − s221
=

√
3/T

s31 =

∫ T

0
s3t(t)φ1(t)dt

= 0

s32 =

∫ T

0
s3t(t)φ2(t)dt

=

∫ 2T/3

T/3
(1)
√

3/Tdt =
√
T/3

g3(t) = s3t− s31φ1(t)− s32(t)φ1(t)
= 1

φ3(t) =
g3(t)√∫ T
0 g23(t)

dt

=
√
T/3

0

1( )tφ

3
T

3 /T

t

0

2 ( )tφ

2
3
T

3
T 0

3 ( )tφ

T

3/T

2
3
T

3 /T

tt

Figure 5: The set of orthonormal functions
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0.4. Module 2

0.4 Module 2

0.5 Optimum receivers using coherent detection

0.5.1 Maximum Likelihood Decoding

• In each time slot of duration T seconds, one of the M possible signals s1(t), s2(t), . . . , sM (t) is
transmitted with equal probability, 1/M .

• For geometric signal representation, the signal si(t), i = 1, 2, . . . ,M, is applied to a bank of correlators
with a common input and with an appropriate set of N orthonormal basis functions, as depicted in
Figure 7.2b.

• The outputs of correlator contains the signal vector si.

• The received signal si(t) is represented by a point in a Euclidean space of dimensionN ≤M .

• This point is a transmitted signal point, or message point for short.

• The set of message points corresponding to the set of transmitted signals and is called as a message
constellation.

• The received signal x(t) consists of transmitted signal and additive noise w(t).

1( )t

1iS

( )N t

iNS

2 ( )t

2iS

( )iS t

0

T
dt

0

T
dt

0

T
dt

Figure 6: Detector or demodulator

• The noise vector w is completely characterized by the channel noise w(t).

• The noise vector w is the portion of the noise w(t) that will interfere with the detection process.

• The remaining portion of this noise, w′(t) , is tuned out by the bank of correlators.

• Based on the observation vector x, the received signal x(t) is represented in the Euclidean space and
this point is referred as the received signal point.

• Due to the presence of noise, the received signal point wanders about the message point in a
completely random fashion, and it may lie anywhere inside a Gaussian-distributed “cloud” centered
on the message point.

• This is illustrated in Figure 8 for the case of a three-dimensional signal space.
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0.5. Optimum receivers using coherent detection

1   

3   

2    Noise cloud

Figure 7

1   

3   

2   

Observation
Vector
X

Signal Vector
si

Noise Vector
W

Message point

Received signal
point

Figure 8

Given the observation vector x, then decision is made such as.

m̂ = mi (1)

The probability of error in this decision is denoted as Pe(mi|x), is expressed as

Pe(mi|x) = 1− P(mi sent|x)

Minimize the average probability of error in mapping each given observation vector x into a decision.
Based on equation 1, the optimum decision rule is:

P(mi sent|x) ≥ P(mk sent|x) for all k 6= i k = 1, 2...m (2)

The decision rule described in 2 is referred to as the maximum a posteriori probability (MAP) rule .
Correspondingly, the system used to implement this rule is called a maximum a posteriori decoder.

In terms of the prior probabilities of the transmitted signals and the likelihood functions, by Bayes
rule the MAP rule is as follows:

Pe(mi|x) =
πkfx(x|mi)

fx

where πkis the prior probability of transmitting symbol mk, fx(x|mi) is the conditional probability density
function of the random observation vector x given the transmission of symbol mk, and fx(x) is the
unconditional probability density function of x.

0.5.2 Correlation receiver

The optimum receiver for an AWGN channel when the transmitted signals s1(t), s2(t), . . . sM (t) s1(t)
are equally likely is called a correlation receiver. It consists of two subsystems, which are Detector and
Maximum-likelihood decoder.

1. Detector consists of M correlators supplied with a set of locally generated orthonormal basis functions
φ1(t), φ2(t), . . . φN (t). Bank of correlators operates on the received signal x(t), 0 ≤ t < T , to produce
the observation vector X. The details are as shown in Figure 9.

2. Maximum-likelihood decoder operates on the observation vector X to produce an estimate of the
transmitted symbol mi, i = 1, 2, . . . ,M , in such a way that the average probability of symbol error
is minimized. The details are as shown in Figure 10.
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0.5. Optimum receivers using coherent detection

In accordance with the maximum likelihood decision rule, the decoder multiplies the N elements of the
observation vector x by the corresponding N elements of each of the M signal vectors s1, s2, . . . sM . Then,
the resulting products are successively summed in accumulators to form the corresponding set of inner
products {xT sk|k = 1, 2, . . . ,M}.

The inner products are corrected for the fact that the transmitted signal energies may be unequal.
Finally, the largest one in the resulting set of numbers is selected, and an appropriate decision on the
transmitted message is thereby made.

0
(    )

T
dt

0
(    )

T
dt

0
(    )

T
dt

Received
Signal

( )  x t

1( )  t

2 ( )  t

( )  N t

1   x

  Nx

2   x

Figure 9: Detector or demodulator
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2   s
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Accumulator  

1

1
  

2
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1  TX s
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Accumulator  

2

1
  

2
E

2  TX s

+ _

Accumulator  

1
  

2 ME

 T
MX s

+ _

Select
largest

Estimate
ˆ  m

Inner product calculator

Figure 10: Signal transmission decoder.
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0.5. Optimum receivers using coherent detection

0.5.3 Matched Filter Receiver

Matched Filter Receiver consists of a linear time-invariant filter with impulse response hj(t). With the
received signal x(t) operating as input, the resulting filter output is defined by the convolution integral

yj(t) =

∫ ∞
−∞

x(τ)hj(t− τ)dτ

The integral is evaluated over the duration of a transmitted symbol, 0 ≤ t ≤ T . Replace the variable τ
with t.

yj(T ) =

∫ T

0
x(t)hj(T − t)dt

The output of the jth correlator is represented as:

xj =

∫ T

0
x(t)φj(t)dt

yj(t) = xj when the following condition is satisfied

hj(T − t) = φj(t) 0 ≤ t ≤ T and j = 1, 2, . . .M

The condition on the desired impulse response of the filter as

hj(t) = φj(T − t) 0 ≤ t ≤ T and j = 1, 2, . . .M

Given a pulse signal φ(t) occupying the interval 0 ≤ t ≤ T , a linear time-invariant filter is said to be
matched to the signal φ(t) if its impulse response h(t) satisfies the following condition

h(t) = φ(T − t) 0 ≤ t ≤ T

A time-invariant filter defined in this way is called a matched filter. An optimum receiver using matched
filters in place of correlators is called a matched-filter receiver. The details of the receiver is depicted in
Figure 11.
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Figure 11: Matched filter
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