Chapter 1

Resonance

1.0.1 Introduction:

Most of the transmission lines, electrical circuits and communication networks are made up of network elements like resistor R, inductor L and Capacitor C. The impedance of the inductor and capacitor depends on the frequency of the applied sinusoidal voltage to the network. As we vary the frequency of the supply the network impedance is purely resistive in which the impedance of the inductor is equal to the impedance of the capacitor. The phenomenon in which the the complex circuit behaves like a pure resistive is called resonance. The frequency at which resonance takes place is called the frequency of resonance ω_r (radians/sec) or f_r (Hz)

Resonance may occur by varying frequency of the applied voltage to the complex network or by varying inductance, L or Capacitance, C, by keeping the frequency constant. Under resonance the following conditions occur in the circuit.

• The impedance of the inductance is equal to the impedance Capacitance.
• The phase of the current in the circuit is in phase with the applied voltage.
• Maximum current will flow in the circuit.
• The voltage across the capacitor or inductor is $I \times X_C$ or $I \times X_L$ where I is the current at resonance and X_C or X_L is the impedance of the circuit.
• The total power is dissipated in the resistor and the absorbed average power is maximum.

1.1 Series Resonance

Consider a series circuit consists of resistor, inductor and capacitor as shown in Figure 1.1.

![Series resonance circuit](image)

Figure 1.1: Series resonance circuit

The impedance of the circuit is

$$Z = R + j(X_L - X_C)$$

At resonance the imaginary part is zero

$$X_L - X_C = 0$$

$$\omega_r L - \frac{1}{\omega_r C} = 0$$

$$\omega_r L = \frac{1}{\omega_r C}$$

$$\omega_r^2 = \frac{1}{LC}$$

$$\omega_r = \frac{1}{\sqrt{LC}} \text{ radians/sec}$$

$$f_r = \frac{1}{2\pi \sqrt{LC}} \text{ Hz}$$
1.1. SERIES RESONANCE

The plot of the frequency response of series circuit is as shown in Figure 1.2. At resonant frequency \(\omega_r \), the current is maximum.

\[
\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}
\]

Frequency is always positive

\[
\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}
\]

In terms of frequency \(f_1 \)

\[
f_1 = \frac{1}{2\pi} \left[-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \right]
\]

At frequency \(\omega_2 \) the circuit impedance \(X_L > X_C \)

\[
X_L - X_C = R
\]

\[
\omega_2 \frac{1}{\omega_2 C} = R
\]

\[
\omega_2^2 LC - \frac{1}{\omega_2 C} = R
\]

\[
\omega_2^2 LC - R\omega_2 C - 1 = 0
\]

\[
\omega_2^2 - \frac{R}{L} \omega_2 - \frac{1}{LC} = 0
\]

\[
a = 1, \quad b = -\frac{R}{L}, \quad c = -\frac{1}{LC}
\]

\[
\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}
\]

Frequency is always positive

\[
\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}
\]

In terms of frequency \(f_2 \)

\[
f_2 = \frac{1}{2\pi} \left[\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \right]
\]
1.1. SERIES RESONANCE

Chapter 1. Resonance

Relation between \(\omega_r \), \(\omega_1 \) and \(\omega_2 \)

\[
\omega_1 \times \omega_2 = \left[\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \times \left[-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] = \frac{1}{LC}
\]

\[
\omega_r = \sqrt{\frac{1}{LC}} \quad \omega_r^2 = \frac{1}{LC} = \omega_1 \omega_2 \\
\omega_r = \sqrt{\omega_1 \omega_2} \\
f_r = \sqrt{f_1 f_2}
\]

Relation between Bandwidth Quality factor

Bandwidth is \(B = \omega_2 - \omega_1 \)

\[
B = \frac{\omega_2 - \omega_1}{\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}}} - \left[-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] = \frac{R}{L} \text{ radians}
\]

\[
B = \frac{1}{2\pi} \frac{R}{L} = \frac{R}{2\pi L} \text{ Hz}
\]

\[
\omega_r = \sqrt{\frac{1}{LC}} \\
\omega_1 = -\frac{B}{2} + \sqrt{\left(\frac{B}{2} \right)^2 + \omega_r^2} \\
\omega_2 = \frac{B}{2} + \sqrt{\left(\frac{B}{2} \right)^2 + \omega_r^2}
\]

Quality factor \(Q \)

The quality factor \(Q \) is defined as the ratio of resonant frequency to the bandwidth

\[
Q = \frac{\omega_r}{B} = \frac{\sqrt{\frac{L}{C}}}{\frac{R}{L}} = \frac{1}{R} \sqrt{\frac{L}{C}}
\]

Resonance by varying circuit inductance

Consider a series RLC circuit as shown in Figure 1.5 is become resonant by varying inductance of the circuit.

\[
\text{Figure 1.5: Resonance by varying inductance}
\]

Let \(L_1 \) is the inductance at \(\omega \)

\[
X_C - X_L = R \\
\frac{1}{\omega C} - \omega L_1 = R
\]

\[
L_1 = \frac{1}{\omega^2 C} - \frac{R}{\omega}
\]

Let \(L_2 \) is the inductance at \(\omega \)

\[
X_L - X_C = R \\
\omega L_2 - \frac{1}{\omega C} = R
\]

\[
L_2 = \frac{1}{\omega^2 C} + \frac{R}{\omega}
\]

Resonance by varying circuit capacitance

Consider a series RLC circuit as shown in Figure 1.6 is become resonant by varying capacitance of the circuit.

\[
\text{Figure 1.6: Resonance by varying capacitance}
\]

Let \(C_1 \) is the capacitance at \(\omega_1 \)

\[
X_C - X_L = R \Rightarrow \frac{1}{\omega_1 C_1} - \omega_1 L = R
\]

\[
\frac{1}{\omega_1 C_1} = R + \omega_1 L \\
C_1 = \frac{1}{\omega_1^2 L + \omega_1 R}
\]

Let \(C_2 \) is the capacitance at \(\omega_2 \)

\[
X_L - X_C = R \Rightarrow \omega_2 L - \frac{1}{\omega_2 C_2} = R
\]

\[
\frac{1}{\omega_2 C_2} = \omega_2 L - R \\
C_2 = \frac{1}{\omega_2^2 L - \omega_2 R}
\]

Figure 1.4: Plot of frequency verses \(Q \)
Table 1.1: Important Formulae

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>At resonance</td>
<td>(Z = R, \ X_L = X_C \quad \text{Current} \ I_r = \frac{E}{R})</td>
</tr>
<tr>
<td>Resonance</td>
<td>(\omega_r = \frac{1}{\sqrt{LC}} \quad f_r = \frac{1}{2\pi\sqrt{LC}})</td>
</tr>
<tr>
<td>Half power frequency</td>
<td>(\omega_1 = \frac{-R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \quad f_1 = \frac{\omega_1}{2\pi})</td>
</tr>
<tr>
<td></td>
<td>(\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \quad f_2 = \frac{\omega_2}{2\pi})</td>
</tr>
<tr>
<td>Half power frequency</td>
<td>(\omega_1 = \frac{-B}{2} + \sqrt{\left(\frac{B}{2}\right)^2 + \omega_r^2} \quad f_1 = \frac{\omega_1}{2\pi})</td>
</tr>
<tr>
<td></td>
<td>(\omega_2 = \frac{B}{2} + \sqrt{\left(\frac{B}{2}\right)^2 + \omega_r^2} \quad f_2 = \frac{\omega_2}{2\pi})</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>(B = \omega_2 - \omega_1 = \frac{R}{L} \quad \text{Radians})</td>
</tr>
<tr>
<td></td>
<td>(B = f_2 - f_1 = \frac{R}{2\pi L} \quad \text{Hz})</td>
</tr>
<tr>
<td>Quality factor</td>
<td>(Q = \frac{\omega_r L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}})</td>
</tr>
<tr>
<td>(\omega_r, \omega_1, \omega_2)</td>
<td>(\omega_r = \sqrt{\omega_1 \omega_2} \quad \text{OR} \ f_r = \sqrt{f_1 f_2})</td>
</tr>
<tr>
<td>Voltage across capacitor/inductor</td>
<td>(V_{Lr} = V_{Cr} = IX_{Lr})</td>
</tr>
<tr>
<td>Value of inductor at (f_1, f_2)</td>
<td>(L_1 = \frac{1}{\omega_1^2 C} - \frac{R}{\omega}, \ L_2 = \frac{1}{\omega_2^2 C} + \frac{R}{\omega})</td>
</tr>
<tr>
<td>Value of capacitor at (f_1, f_2)</td>
<td>(C_1 = \frac{1}{\omega_1^2 L} - \frac{R}{\omega}, \ C_2 = \frac{1}{\omega_2^2 L} + \frac{R}{\omega})</td>
</tr>
</tbody>
</table>

Selectivity: is property of circuit in which the circuit is allowed to select a band of frequencies between \(f_1 \) and \(f_2 \).
1.1. SERIES RESONANCE

Chapter 1. Resonance

1: For the circuit shown in Figure 1.7 Find (a) The resonant and half power frequencies (b) Calculate the quality factor and bandwidth (c) Determine the amplitude of the current at $\omega_0, \omega_1, \omega_2$

\[C = 3.09 \mu F \quad L = 100 mH \]

\[v(t) = 10 \sin \omega t \]

\[R = 3 \Omega \]

The resonant frequency ω_0 is

\[\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{3.09 \times 10^{-7}}} = 1800 \text{ rad/s} \]

The half power frequency ω_1, ω_2 is

\[\frac{R}{2L} = \frac{3}{2 \times 100 \times 10^{-3}} = 15 \]

\[\omega_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \]

\[= -15 + \sqrt{225 + \frac{1}{3.09 \times 10^{-7}}} \]

\[= -15 + \sqrt{225 + 3.236 \times 10^6} \]

\[= -15 + 1798.96 = 1784 \text{ rad/s} \]

\[\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \]

\[= 15 + 1798.96 = 1814 \text{ rad/s} \]

Frequency in Hz is

\[f_1 = \frac{\omega_1}{2\pi} = \frac{1784}{2\pi} = 284 \text{ Hz} \]

\[f_2 = \frac{\omega_2}{2\pi} = \frac{1814}{2\pi} = 289 \text{ Hz} \]

Bandwidth B is

\[B = \omega_2 - \omega_1 = 1814 - 1784 = 30 \text{ rad/s} \]

Also B is

\[B = \frac{R}{L} = \frac{3}{100 \times 10^{-3}} = 30 \text{ rad/s} \]

Quality factor Q is

\[Q = \frac{\omega_0}{B} = \frac{1800}{30} = 60 \]

The amplitude of the current at ω_0 is

\[I = \frac{V}{R} = \frac{10}{3} = 3.33 \text{ A} \]

The amplitude of the current at ω_1, ω_2 is

\[I = \frac{V}{\sqrt{2R}} = \frac{10}{\sqrt{2} \times 3} = 2.36 \text{ A} \]

2: For the circuit shown in Figure 1.8 find the resonant frequency, quality factor and bandwidth for the circuit. Determine the change in Q and the bandwidth if R is changed from $R = 2 \Omega$ to $R = 0.4 \Omega$

\[C = 5 \mu F \quad L = 2 \text{ mH} \]

\[v(t) = 10 \sin \omega t \]

\[R = 2 \Omega \]

The resonant frequency ω_0 is

\[\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10 \times 10^{-9}}} = 10 \times 10^5 \text{ rad/s} \]

B is

\[B = \frac{R}{L} = \frac{2}{2 \times 10^{-3}} = 1000 \text{ rad/s} \]

Quality factor Q is

\[Q = \frac{\omega_0}{B} = \frac{10 \times 10^5}{1000} = 10 \]

When $R = 0.4 \Omega$ B is

\[B = \frac{R}{L} = \frac{0.4}{2 \times 10^{-3}} = 200 \text{ rad/s} \]

Quality factor Q is

\[Q = \frac{\omega_0}{B} = \frac{10 \times 10^5}{200} = 50 \]

3: For the circuit shown in Figure find the following (a) The resonant frequency f_o (b) Quality factor Q (c) f_{c1}, f_{c2} (d) Bandwidth B

\[12.5 k \Omega \quad 1.25 \mu F \quad 312 mH \]

\[v(t) = 30 \text{ k} \Omega \quad v(t) \]

\[v(t) = 50 \mu F \]

Dr. Manjunatha P Professor Dept of E&CE, JNN College of Engineering, Shivamogga

5
1.1. SERIES RESONANCE

The resonant frequency \(\omega_0 \) is

\[
\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.39 \times 10^{-12}}} = 1.6 \times 10^6 \text{ rad/s}
\]

B and the average power dissipated by the network at resonance

The resonant frequency \(\omega_0 \) is

\[
\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{2.5 \times 10^{-6}} = 632.45 \text{ rad/s}
\]

\[
f_o = \frac{\omega_0}{2\pi} = \frac{632.45}{2\pi} = 100 \text{ Hz}
\]

Quality factor \(Q \) is

\[
Q = \frac{\omega_0}{B} = \frac{632.45}{200 \times 10^3} = 8
\]

The half power frequency \(\omega_1, \omega_1 \) is

\[
\omega_1 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}
\]

\[
\omega_1 = -1 \times 10^5 + \sqrt{(1 \times 10^5)^2 + \frac{1}{0.39 \times 10^{-12}}}
\]

\[
= -1 \times 10^5 + \sqrt{1 \times 10^{10} + 2.5641 \times 10^{12}}
\]

\[
= -1 \times 10^5 + 1.5 \times 10^6 = 1.5 \times 10^6 \text{ rad/s}
\]

\[
\omega_2 = \frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}
\]

\[
\omega_2 = 1 \times 10^5 + 1.6 \times 10^6 = 1.7 \times 10^6 \text{ rad/s}
\]

The average power dissipated at resonance

\[
P = \frac{1}{2} \times \frac{V^2}{R}
\]

\[
P = \frac{1}{2} \times \frac{12^2}{4} = 18 \text{ Watts}
\]

5: For the circuit shown in Figure the maximum amplitude of current is 10A, circuit quality factor \(Q \) is 100 and \(L=0.1H \). If the applied voltage is 100 V find the value of capacitance

\[
\frac{V}{I_m} = 100 \quad \Rightarrow \quad V = 100 \quad \Rightarrow \quad I_m = 10 \Omega
\]

The relation between \(Q \) and Bandwidth \(B \) is

\[
Q = \frac{1}{R} \sqrt{\frac{L}{C}} \quad \Rightarrow \quad \sqrt{\frac{L}{C}} = Q \times R
\]
6: The Q of a series circuit network is 10. The maximum amplitude of current at resonance is 1 A when applied voltage is 10 V. If L=0.1 H find the value of capacitance

Solution:
The maximum value of current flows in a circuit when the circuit is in resonance and the impedance of the circuit is pure resistor and its value is

\[R = \frac{V}{I_m} = \frac{10}{1} = 10 \, \Omega \]

The relation between Q and Bandwidth B is

\[Q = \frac{1}{R} \sqrt{\frac{L}{C}} \Rightarrow \sqrt{\frac{L}{C}} = Q \times R \]

\[\frac{L}{C} = (Q \times R)^2 = (10 \times 10)^2 = 10 \times 10^3 \]

\[C = \frac{L}{10 \times 10^3} = \frac{0.1}{10 \times 10^3} = 0.1 \mu F \]

7: A coil of inductance 9H and resistance 50 Ω in series with a capacitor is supplied at constant voltage from a variable frequency source. If the maximum current is 1A at 75 Hz, find the frequency when the current is 0.5A

Solution:

8: Design a series resonant circuit to have \(\omega_r = 2500 \, \text{rad/sec} \) \(Z(\omega_r) = 100 \, \Omega \) and \(B = 500 \, \text{rad/sec} \)

Solution:

\[B = \omega_r - \omega_1 = \frac{R}{L} \]

\[L = \frac{R}{B} = \frac{100}{500} = 0.2 H \]

The resonant frequency \(\omega_r \) is

\[\omega_r = \frac{1}{\sqrt{LC}} \]

\[\sqrt{LC} = \frac{1}{\omega_r} = \frac{1}{2500} = 4 \times 10^{-4} \]

\[LC = 1.6 \times 10^{-7} \]

9: A series resonant RLC circuit has resonant frequency of 80 K rad/sec and a quality factor of 8. Find the bandwidth, the upper cutoff frequency and lower cutoff frequency

Solution:

\[Q = \frac{\omega_r}{B} \]

\[B = \frac{\omega_r}{Q} = \frac{80 \times 10^3}{8} = 10 \times 10^3 \, \text{rad/sec} \]

Bandwidth in Hertz

\[B = \frac{B}{2\pi} = \frac{10 \times 10^3}{2 \times \pi} = 1.59 \times 10^3 \, \text{Hz} \]

\[B = \omega_2 - \omega_1 = \frac{R}{L} \]

\[\omega_1 = \frac{B}{2} + \sqrt{\left(\frac{B}{2}\right)^2 + \omega_r^2} = \frac{-10 \times 10^3}{2} + \sqrt{\left(\frac{10 \times 10^3}{2}\right)^2 + (80 \times 10^3)^2} = \frac{-5 \times 10^3 + \sqrt{25 \times 10^6 + 6.4 \times 10^9}}{2} = -5 \times 10^3 + 80.156 \times 10^3 = 75156 \, \text{rad/sec} \]

\[\omega_2 = \frac{B}{2} + \sqrt{\left(\frac{B}{2}\right)^2 + \omega_r^2} = \frac{5 \times 10^3 + 80.156 \times 10^3 = 85156 \, \text{rad/sec} \]

Frequency in Hertz

\[f_1 = \frac{\omega_1}{2\pi} = \frac{75156}{2 \times \pi} = 11.96 \times 10^3 \, \text{Hz} \]

\[f_2 = \frac{\omega_2}{2\pi} = \frac{85156}{2 \times \pi} = 13.55 \times 10^3 \, \text{Hz} \]

10: A series RLC circuit has R=10 Ω, L=0.1H, and C=100 \mu F and is connected across 200 V, variable frequency source. Find (a) the resonant frequency (b) impedance at this frequency (c) the voltage across drop across
inductance and capacitance at this frequency (d) quality factor and (e) bandwidth.

Solution: (a) Resonant frequency
\[f_r = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{0.1 \times 100 \times 10^{-6}}} = 50.33 \text{ Hz} \]

(b) Impedance at resonance \(Z = R = 10 \Omega \)
\[I = \frac{V}{R} = \frac{200}{10} = 20 \text{ A} \]

(c) Voltage across inductance/capacitance
\[X_L = X_C = 2\pi f_r \times L = 2\pi \times 50.33 \times 0.1 = 31.62 \Omega \]
\[V_L = I X_L = 20 \times 31.62 = 632.46 \text{ V} \]

(d) Quality factor
\[Q = \frac{X_L}{R} = \frac{31.62}{0.1} = 3.162 \]

(e) Bandwidth
\[B = \frac{R}{2\pi L} = \frac{10}{2 \times \pi \times 0.1} = 15.9 \text{ Hz} \]

11: A coil of resistance \(R=10 \Omega \) and inductance \(L=0.2 \text{ H} \) is connected in series with a capacitance across 230 V supply. Find (a) the value of the capacitance for which resonance occurs at 100 Hz frequency (b) the current through and voltage across the capacitor (c) Q factor of the coil

Solution: (a) Resonant frequency
\[f_r = \frac{1}{2\pi\sqrt{LC}} \]
\[\sqrt{LC} = \frac{1}{2\pi f_r} = \frac{1}{2\pi \times 50} = 3.18 \times 10^{-3} \]
\[LC = 1 \times 10^{-5} \]
\[L = \frac{1}{100 \times 10^{-6}} = 101 \text{ mH} \]

(b) Quality factor
\[Q = \frac{X_L}{R} = \frac{2\pi f_r \times L}{R} = \frac{2\pi \times 100 \times 10^{-5}}{10} = 3.14 \]

Impedance at resonance is \(Z = R = 10 \Omega \)

(c) Current through resistance is
\[I = \frac{V}{R} = \frac{230}{10} = 23 \text{ A} \]

Voltage drop across resistor is
\[V = I R = 23 \times 10 = 230 \text{ V} \]

Voltage drop across Inductor/capacitance is
\[X_L = X_C = \frac{1}{2\pi f_r \times C} = \frac{1}{2\pi \times 100 \times 12.66 \times 10^{-6}} = 125.7 \Omega \]

Voltage drop across capacitance
\[V_C = I X_C = 11.5 \times 125.7 = 1445.7 \text{ V} \]

(c) Quality factor
\[Q = \frac{X_L}{R} = \frac{2\pi f_r \times L}{R} = \frac{2\pi \times 100 \times 0.2}{20} = 6.28 \]

12: An RLC series circuit has a resistance of \(R=10 \Omega \) and a variable inductance. is connected in series with a capacitance across 230 V supply. Find (a) the value of the inductance for which the voltage across the resistance is maximum. resonance occurs at 100 Hz frequency (b) Q factor of the coil (c) Voltage across R, L, C.

The applied voltage is 230 V 50 Hz.

Solution: (a) Resonant frequency
\[f_r = \frac{1}{2\pi\sqrt{LC}} \]
\[\sqrt{LC} = \frac{1}{2\pi f_r} = \frac{1}{2\pi \times 50} = 3.18 \times 10^{-3} \]
\[LC = 1 \times 10^{-5} \]
\[L = \frac{1}{100 \times 10^{-6}} = 101 \text{ mH} \]

(b) Quality factor
\[Q = \frac{X_L}{R} = \frac{2\pi f_r \times L}{R} = \frac{2\pi \times 100 \times 10^{-5}}{10} = 3.14 \]

Impedance at resonance is \(Z = R = 10 \Omega \)

(c) Current through resistance is
\[I = \frac{V}{R} = \frac{230}{10} = 23 \text{ A} \]

Voltage drop across resistor is
\[V = I R = 23 \times 10 = 230 \text{ V} \]

Voltage drop across Inductor/capacitance is
\[X_L = X_C = \frac{1}{2\pi f_r \times C} = \frac{1}{2\pi \times 100 \times 12.66 \times 10^{-6}} = 125.7 \Omega \]
1.2 Parallel Resonance

Consider a parallel circuit consists of resistor and inductor in one branch and capacitor in another branch which is as shown in Figure 1.12.

The total admittance of the circuit is

\[Y = G + j \left(\omega C - \frac{1}{\omega L} \right) \]

When the circuit is at resonance the imaginary part is zero

\[\omega_r C - \frac{1}{\omega_r L} = 0 \]

\[\omega_r^2 = \frac{1}{LC} \]

\[\omega_r = \sqrt{\frac{1}{LC}} \]

\[f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \]

1.3 Practical Parallel Resonant circuit

Consider a parallel circuit consists of resistor and inductor in one branch and capacitor in another branch which is as shown in Figure 1.13.

The impedance of the inductor branch is

\[Z_L = R + j\omega L \]

The admittance of the inductor branch is

\[Y_L = \frac{1}{Z_L} = \frac{1}{R + j\omega L} \]

\[= \frac{1}{R + j\omega L} \times \frac{R - j\omega L}{R - j\omega L} = \frac{R - j\omega L}{R^2 + \omega^2 L^2} \]

Similarly the impedance of the capacitor branch is

\[Z_C = \frac{1}{j\omega C} \]

The admittance of the capacitor branch is

\[Y_C = \frac{1}{Z_C} = j\omega C \]

Total admittance of the circuit is

\[Y = Y_L + Y_C = \frac{R - j\omega L}{R^2 + \omega^2 L^2} + j\omega C \]

Separating real and imaginary parts

\[Y = \frac{R}{R^2 + \omega^2 L^2} + j \left[\omega C - \frac{\omega L}{R^2 + \omega^2 L^2} \right] \]

\[\omega_r C = \frac{\omega_r L}{R^2 + \omega^2 L^2} \]

\[\omega_r^2 = \frac{L}{C} - R^2 \]

\[f_r = \frac{1}{2\pi} \sqrt{\frac{L}{C} - \frac{R^2}{L^2}} \]
1.4 Parallel Resonant circuit by considering capacitance resistance

Consider a parallel circuit consists of resistor and inductor in one branch and capacitor in another branch which is as shown in Figure 1.14.

![Parallel Resonant Circuit Diagram]

Figure 1.14: General parallel resonant circuit

The impedance of the inductor branch is

\[Z_L = R_L + j\omega L \]

The admittance of the inductor branch is

\[Y_L = \frac{1}{Z_L} = \frac{1}{R_L + j\omega L} \]

\[Y_L = \frac{1}{Z_L} = \frac{1}{R_L + j\omega L} \frac{R_L - j\omega L}{R_L - j\omega L} = \frac{R_L - j\omega L}{R_L + \omega^2 L^2} \]

Similarly the impedance of the capacitor branch is

\[Z_C = R_C - j\frac{1}{\omega C} \]

The admittance of the inductor branch is

\[Y_C = \frac{1}{Z_C} = \frac{1}{R_C - j\frac{1}{\omega C}} \]

\[Y_C = \frac{1}{Z_C} = \frac{1}{R_C - j\frac{1}{\omega C}} \frac{R_C + j\frac{1}{\omega C}}{R_C + j\frac{1}{\omega C}} = \frac{R_C + j\frac{1}{\omega C}}{R_C^2 + \frac{1}{\omega^2 C^2}} \]

Total admittance of the circuit is

\[Y = Y_L + Y_C = \frac{R_L - j\omega L}{R_L^2 + \omega^2 L^2} + \frac{R_C + j\frac{1}{\omega C}}{R_C^2 + \frac{1}{\omega^2 C^2}} \]

Separating real and imaginary parts

Real part is

\[\frac{R_L}{R_L^2 + \omega^2 L^2} + \frac{R_C}{R_C^2 + \frac{1}{\omega^2 C^2}} \]

Imaginary part is

\[\frac{\frac{1}{\omega C}}{R_C^2 + \frac{1}{\omega^2 C^2}} - \frac{\omega L}{R_L^2 + \omega^2 L^2} \]

\[\frac{1}{\omega C} \left(R_L^2 + \omega^2 L^2 \right) = \omega L \left(R_C^2 + \frac{1}{\omega^2 C^2} \right) \]

\[\frac{1}{LC} \left(R_L^2 + \omega^2 L^2 \right) = \omega^2 \left(R_C^2 + \frac{1}{\omega^2 C^2} \right) \]

\[\frac{R_L^2}{LC} + \omega^2 \frac{L}{C} = \omega^2 \left(\frac{R_C}{LC} - \frac{1}{C^2} \right) \]

\[\omega^2 \left(\frac{R_C}{LC} - \frac{L}{C} \right) = \frac{R_L}{LC} - \frac{1}{C^2} \]

\[\omega_r = \sqrt{\frac{1}{LC} \left(\frac{R_L^2}{L^2} - \frac{L}{C} \right)} \]

\[f_r = \frac{1}{2\pi \sqrt{LC} \left(\frac{R_L^2}{L^2} - \frac{L}{C} \right)} \]

The frequency response of parallel graph is as shown in Figure 1.15. From the figure it is observed that the current is minimum at resonance. The parallel circuit is called as a rejector circuit. The circuit impedance is maximum at the resonance. The half power frequencies are at \(\sqrt{2} f_r \).

![Plot of Parallel Resonant Circuit]

Figure 1.15: plot of parallel resonant circuit
1.4. PARALLEL RESONANT CIRCUIT BY CONSIDERING CAPACITANCE RESISTANCE

Chapter 1. Resonance

Calculate the resonant frequency of the circuit shown in Figure 1.16

![Parallel Resonant Circuit](image)

Figure 1.16: General parallel resonant circuit

\[Z_{LC} = jX_L + jX_C = j\omega L + \frac{1}{j\omega C} = \frac{1 - \omega^2 LC}{j\omega C} \]

\[Z_{LC} = j\left(\frac{\omega^2 LC - 1}{\omega C}\right) \]

\[\omega^2 LC = 1 \]

\[\omega = \frac{1}{\sqrt{LC}} \]

1: For the circuit as shown in Figure 1.17 find the resonant frequency and the corresponding current in each branch.

![General Parallel Resonant Circuit](image)

Figure 1.17: General parallel resonant circuit

Solution:

\[L = 1 \times 10^{-3} \times 20 \times 10^{-6} = 50 \]

\[f_r = \frac{1}{2\pi \sqrt{LC}} \sqrt{\frac{R^2 - L}{R_C^2 - L}} \]

\[f_r = \frac{1}{2\pi \sqrt{2 \times 10^{-3} \times 50}} \sqrt{\frac{6^2 - 50}{4^2 - 50}} \]

\[f_r = 1125.4 \times 0.641 = 721 \text{ Hz} \]

\[X_L = 2\pi \times f 	imes L = 2\pi \times 721 \times 1 \times 10^{-3} = 4.53\Omega \]

\[X_C = \frac{1}{2\pi \times f \times C} = \frac{1}{2\pi \times 721 \times 20 \times 10^{-6}} = 11.03\Omega \]

\[I_L = \frac{V}{Z_L} = \frac{200}{R + jX_L} = \frac{200}{6 + j4.53} \]

\[I_L = \frac{200}{7.51} \angle -37 = 26.63\angle -37 \]

\[I_C = \frac{V}{Z_C} = \frac{200}{4 - j11.03} \]

\[= \frac{200}{11.73, \angle -70} = 17.05\angle 70 \]

2: Find the value of L for which the circuit as shown in Figure 1.18 is resonance at \(\omega = 5000 \text{ rad/sec} \).

![General Parallel Resonant Circuit](image)

Figure 1.18: General parallel resonant circuit

Solution: The admittance of circuit is given by

\[Y = \frac{1}{4 + jX_L} + \frac{1}{8 - j12} \]

\[= \frac{4 + jX_L}{4^2 + X_L^2} + \frac{8 - 12}{8^2 + 12^2} \]

At resonance

\[X_L = \frac{12(4^2 + X_L^2)}{192 + 12(4^2 + X_L^2)} = X_L(8^2 + 12^2) \]

\[192 + 12X_L^2 = 208X_L \]

\[3X_L^2 - 52X_L + 48 = 0 \]

\[X_L = \frac{52 \pm \sqrt{52^2 - (4 \times 3 \times 38)}}{2 \times 3} \]

\[X_{L1} = 16.36 \Omega \]

\[X_{L2} = 0.978 \Omega \]

\[L_1 = \frac{X_{L1}}{\omega} = \frac{16.36}{5000} = 3.27\text{mH} \]

\[L_2 = \frac{X_{L2}}{\omega} = \frac{0.978}{5000} = 0.196\text{mH} \]

3: Find the value of L for which the circuit as shown in Figure 1.19 is resonance at 1000 Hz.

![General Parallel Resonant Circuit](image)

Figure 1.19: General parallel resonant circuit

Dr. Manjunatha P Professor Dept of E&CE, JNN College of Engineering, Shivamogga

11
1.4. PARALLEL RESONANT CIRCUIT BY CONSIDERING CAPACITANCE RESISTANCE

Solution: The admittance of circuit is given by
\[X_C = \frac{1}{2\pi f C} = \frac{1}{2\pi \times 1000 \times 50 \times 10^{-6}} = 3.18 \Omega \]
\[Y = \frac{1}{10 + jX_L} + \frac{1}{10 - jX_L} \]
\[= \frac{10 + jX_L}{10^2 + X_L^2} + \frac{10 - jX_L}{10^2 + X_L^2} \]
\[= \frac{10 + jX_L}{10^2 + X_L^2} + \frac{10 - jX_L}{10^2 + X_L^2} \]
\[= \frac{10 + jX_L}{10^2 + X_L^2} + \frac{10 - jX_L}{10^2 + X_L^2} \]
\[= \left(\frac{10}{164} + \frac{6}{36 + X_L^2} \right) + j \left(\frac{X_L}{36 + X_L^2} - \frac{8}{164} \right) \]

At resonance
\[\frac{X_C}{36 + X_L^2} - \frac{8}{164} = 0 \]
\[164X_C - 8X_L^2 - 288 = 0 \]
\[2X_L^2 - 41X_C + 78 = 0 \]
\[X_{C1} = \frac{41 \pm \sqrt{41^2 - (4 \times 2 \times 72)}}{2 \times 2} \]
\[X_{C1} = 18.56 \Omega \]
\[X_{C2} = 1.94 \Omega \]
\[C_1 = \frac{1}{\omega X_{C1}} = \frac{1}{2 \times \pi \times 750 \times 18.56} = 11.44 \mu F \]
\[C_2 = \frac{1}{\omega X_{C2}} = \frac{1}{2 \times \pi \times 750 \times 1.94} = 109.45 \mu F \]

5: Find the value of C for which the circuit as shown in Figure 1.21 is resonance at 3000 rad/sec.

Solution:
\[X_L = \omega \times L = 3000 \times 0.005 = 15 \Omega \]

The admittance of circuit is given by
\[Y = \frac{1}{10 + jX_L} + \frac{1}{10 - jX_L} \]
\[= \frac{10 + jX_L}{10^2 + X_L^2} + \frac{10 - jX_L}{10^2 + X_L^2} \]
\[= \left(\frac{10}{325} + \frac{8}{64 + X_L^2} \right) + j \left(\frac{X_L}{64 + X_L^2} - \frac{8}{325} \right) \]

At resonance
\[\frac{X_L}{36 + X_L^2} - \frac{8}{325} = 0 \]
\[325X_L = 512 + 8X_L^2 \]
\[8X_L^2 - 325X + 512 = 0 \]
1.4. PARALLEL RESONANT CIRCUIT BY CONSIDERING CAPACITANCE RESISTANCE

Chapter 1. Resonance

\[X_C = \frac{325 \pm \sqrt{325^2 - (4 \times 8 \times 512)}}{2 \times 8} \]
\[= \frac{325 \pm \sqrt{105625 - 16384}}{16} \]
\[= \frac{325 \pm 298.7}{16} \]
\[X_{C1} = 38.98 \Omega \]
\[X_{C2} = 1.64 \Omega \]

\[C_1 = \frac{1}{\omega C} = \frac{1}{3000 \times 38.98} = 8.55 \mu F \]
\[C_2 = \frac{1}{\omega C} = \frac{1}{3000 \times 1.64} = 203 \mu F \]

6: Find the value of \(R_L \) for which the circuit as shown in Figure 1.22 is resonant.

![General parallel resonant circuit](image)

Solution: The admittance of circuit is given by

\[Y = \frac{1}{R_L + j10} + \frac{1}{R_L - j15} \]
\[= \frac{R_L}{R_L^2 + 100} + \frac{10 - j15}{100 + 225} \]
\[= \left(\frac{R_L}{R_L^2 + 100} + \frac{10}{325} \right) + j \left(\frac{15}{325} - \frac{10}{R_L^2 + 100} \right) \]

At resonance

\[\frac{15}{325} - \frac{10}{R_L^2 + 100} = 0 \]
\[R_L^2 = 116.6 \]
\[R_L = 10.8 \]

7: Two impedances (10+j12) \(\Omega \) and (20-j15)\(\Omega \) are connected in parallel and this combination is connected in series with an impedance (5 - jX_C) \(\Omega \).

![General parallel resonant circuit](image)

Solution: The impedance of circuit is given by

\[Z = (5 - jX_C) + [(10 + j12)(20 - j15)] \]
\[= (5 - jX_C) + \frac{(10 + j12)(20 - j15)}{(10 + j12) + (20 - j15)} \]
\[= (5 - jX_C) + \frac{(10 + j12)(20 - j15)}{30 - j3} \]
\[= (5 - jX_C) + \frac{380 + j90}{30 - j3} \]
\[= 390.51 \angle 13.325 \]
\[= 30.14 \angle -5.71 \]
\[= (5 - jX_C) + 13 \angle 19.03 \]
\[= (5 - jX_C) + 12.78 + j2.33 \]
\[= (5 - jX_C) + 17.78 + j(2.33 - jX_C) \]

At resonance imaginary part is zero

\[X_C = 2.33 \]
1.4. PARALLEL RESONANT CIRCUIT BY CONSIDERING CAPACITANCE RESISTANCE

8: (2015-JAN) Find the value of C for which the circuit as shown in Figure 1.24 is resonance at 50 Hz.

\[Y = \frac{1}{20 + j37.7} + \frac{1}{10 - jX_C} \]
\[= \frac{20 - j37.7}{20^2 + 37.7^2} + \frac{10 + jX_C}{10^2 + X_C^2} \]
\[= \frac{20 - j37.7}{1821.29} + \frac{10 + jX_C}{10^2 + X_C^2} \]

At resonance imaginary part is
\[\frac{X_C}{100 + X_C^2} = 0 \]
\[\frac{X_C}{100 + X_C^2} = \frac{37.7}{1821.29} \]
\[37.7X_C^2 - 1821.29X_C + 3770 = 0 \]
\[X_C = \frac{1821.29 \pm \sqrt{1821.29^2 - 4 \times 37.7 \times 3770}}{2 \times 37.7} \]
\[= \frac{1821.29 \pm \sqrt{3317097 - 568516}}{75.4} \]
\[= \frac{1821.29 \pm 1657.8}{75.4} \]
\[\implies X_C = 46.14 \Omega \]
\[X_{C1} = 2.16 \Omega \]

\[\omega = 2 \times \pi \times f = 2 \times \pi \times 50 = 314.16 \]
\[C_1 = \frac{1}{\omega X_{C1}} = \frac{1}{314.16 \times 46.14} = 68.98 \mu F \]
\[C_2 = \frac{1}{\omega X_{C2}} = \frac{1}{314.16 \times 2.16} = 1.47 \times 10^{-3} F \]

9: (2012-DEC) Determine the value of \(R_L \), \(R_C \) for which the circuit as shown in Figure 1.25 is resonates at all frequencies.

\[f_r = \frac{1}{2\pi\sqrt{LC}} \sqrt{R_L^2 - \frac{L}{C}} \]

The circuit will resonate at any frequency if
\[R_L^2 = R_C^2 = \frac{L}{C} \]
\[R_L = R_C = \sqrt{\frac{L}{C}} = \sqrt{\frac{40 \times 10^{-3}}{40 \times 10^{-6}}} = 31.6 \Omega \]
1.4. PARALLEL RESONANT CIRCUIT BY CONSIDERING CAPACITANCE RESISTANCE

JAN 2017 CBCS Q 7 a) Prove that \(f_0 = \sqrt{f_1f_2} \) where \(f_1 \) and \(f_2 \) are the two half power frequencies of a resonant circuits. 8 Marks

JAN 2017 CBCS Q 7 b) A series RLC circuit of \(R = 100 \ \Omega \ L = 0.01H \) and \(C = 0.01 \mu F \) is connected across supply of 10 mV. Determine i) \(f_0 \) ii) Q factor, iii) BW iv) \(f_1 \) and \(f_2 \) iv) \(I_0 \) 8 Marks

Solution:

i) \(LC = 0.01 \times 0.01 \times 10^{-6} = 1 \times 10^{-10} \)

\[f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{1 \times 10^{-10}}} = 15.9 \times 10^3 Hertz \]

ii) \(Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{2\pi f_0 L}{R} \)

\[Q = \frac{2\pi f_0 L}{R} = \frac{1}{2\pi \times 15.9 \times 10^3 \times 0.01}{100} = 10 \]

iii) Bandwidth BW

\[B = \frac{R}{L} = \frac{100}{0.01} = 10 \times 10^3 \text{rad/sec} \]

Bandwidth in Hz

\[B = \frac{f_2}{2\pi} = \frac{10 \times 10^3}{2\pi} = 1.59 \times 10^3 \text{Hz} \]

iv) \(f_1 \) and \(f_2 \)

\[\frac{R}{2L} = \frac{100}{2 \times 0.01} = 5 \times 10^3 \]

\[f_1 = \frac{1}{2\pi} \left[-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[-5 \times 10^3 + \sqrt{(5 \times 10^3)^2 + 1 \times 10^{-10}} \right] \]

\[= \frac{1}{2\pi} \left[-5 \times 10^3 + \sqrt{25 \times 10^6 + 1 \times 10^{10}} \right] \]

\[= \frac{1}{2\pi} \left[-5 \times 10^3 + 100 \times 10^3 \right] = 15.12 \times 10^3 \text{Hz} \]

\[f_2 = \frac{1}{2\pi} \left[\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[5 \times 10^3 + 100 \times 10^3 \right] = 16.71 \times 10^3 \text{Hz} \]

iv) \(I_0 \)

\[I_0 = \frac{V}{R} = \frac{10 \times 10^{-3}}{10} = 1 \times 10^{-3} \text{Ampere} \]

2017 JAN 5 a) A series R-L-C circuit is fed with 50 V rms supply. At resonance the current through circuit is 25 A and the voltage across inductor is 1250 volts. If \(C = 4 \mu F \) determine the values of R, L, Q, resonant frequency, bandwidth and half power frequencies. (12 M)

Solution:

\[R = \frac{V}{I} = \frac{50}{25} = 2 \ \Omega \]

At resonance

\[X_L = X_C \]

Quality factor Q is

\[Q = \frac{V_L \text{ or } V_C}{E} = \frac{1250}{50} = 25 \]

\[L = (QR)^2C = (25 \times 2)^2 \times 4 \times 10^{-6} = 0.01H \]

\[f_0 = \frac{1}{2\pi\sqrt{LC}} \]

\[f_0 = \frac{1}{2\pi \sqrt{0.01 \times 4 \times 10^{-6}}} = 795.7 \text{Hz} \]

iii) Bandwidth BW

\[B = \frac{R}{L} = \frac{2}{0.01} = 200 \text{rad/sec} \]

Bandwidth in Hz

\[B = \frac{f_2}{2\pi} = \frac{200}{2\pi} = 31.83 \text{Hz} \]

iv) \(f_1 \) and \(f_2 \)

\[\frac{R}{2L} = \frac{2}{2 \times 0.01} = 100 \]

\[LC = 0.01 \times 4 \times 10^{-6} = 4 \times 10^{-8} \]

\[f_1 = \frac{1}{2\pi} \left[-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[-100 + \sqrt{(100)^2 + \frac{1}{4 \times 10^{-8}}} \right] \]

\[= \frac{1}{2\pi} \left[-100 + \sqrt{10 \times 10^3 + 25 \times 10^6} \right] \]

\[= \frac{1}{2\pi} \left[-100 + 5 \times 10^3 \right] = 779.8 \text{Hz} \]

\[f_2 = \frac{1}{2\pi} \left[\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[100 + 5 \times 10^3 \right] = 811.69 \text{Hz} \]
JULY 2016 Q 5 a) With respect to series resonant circuit define resonant frequency f_r and half power frequencies f_1 and f_2. Also show that the resonant frequency is equal to the geometric mean of half power frequencies 10 Marks

JULY 2016 Q 5 B) A series circuit is energized by constant voltage and constant frequency supply. Resonance takes place due to variation of inductance and the supply frequency is 300 Hz. The capacitance in the circuit is $10\mu F$. Determine the value of resistance in the circuit if the quality factor is 5. Also find the value of the inductance at half power frequencies. 10 Marks

Solution:

Given:

- $f_r = \frac{1}{2\pi} \sqrt{LC}$
- $\omega = 2\pi f$ for series resonant circuit
- $Q = 2\pi f_r L / R$
- $B = 2\pi f_r = 2 \times \pi \times 75 \times 10^3 = 471.2 \times 10^3$ radians

Frequency in Hertz:

$$f_1 = \frac{\omega_1}{2\pi} = \frac{736 \times 10^3}{2 \times \pi} = 117.13 \times 10^3 Hz$$

$$f_2 = \frac{\omega_2}{2\pi} = \frac{1.2 \times 10^6}{2 \times \pi} = 191 \times 10^3 Hz$$

DEC/JAN 2015 5 b) Calculate the half power frequencies of series resonant circuit where the resonance frequency is 150 KHz and bandwidth is 75 KHz 4 Marks

Solution:

Frequency in radians is

$$\omega = 2\pi f_r = 2 \times \pi \times 150 \times 10^3 = 942.5 \times 10^3 radians$$

Bandwidth in radians is

$$B = 2\pi f_r = 2 \times \pi \times 75 \times 10^3 = 471.2 \times 10^3 radians$$

Frequency in Hertz

$$f_1 = \frac{\omega_1}{2\pi} = \frac{942.5 \times 10^3}{2 \times \pi} = 117.13 \times 10^3 Hz$$

$$f_2 = \frac{\omega_2}{2\pi} = \frac{471.2 \times 10^3}{2 \times \pi} = 191 \times 10^3 Hz$$

DEC 2015 5 a) It is required that a series RLC circuit should resonate at 500 KHz. Determine the values of R, L, and C if the bandwidth of the circuit is 10 KHz and its impedance is 100 Ω at resonance. Also find the voltages across L and C resonance if the applied voltage is 75 volts 10 Marks

Solution:

At resonance the circuit acts as a pure resistive hence the value of $R=100 \Omega$

$$B = \frac{R}{2\pi L}$$

$$f_0 = \frac{1}{2\pi \sqrt{LC}}$$
\[\sqrt{LC} = \frac{1}{2\pi f_0} = \frac{1}{2\pi \times 500 \times 10^3} = 0.318 \times 10^{-6} \]

\[LC = (0.318 \times 10^{-6})^2 = 0.1 \times 10^{-12} \]

\[C = \frac{0.1 \times 10^{-12}}{1.59 \times 10^{-3}} = 62.83 \times 10^{-12} F \]

\[X_L = 2\pi f_0 L = 2\pi \times 500 \times 10^3 \times 1.59 \times 10^{-3} = 5 \times 10^3 \Omega \]

At resonance current I is
\[I = \frac{V}{R} = \frac{75}{100} = 0.75 A \]

\[X_C = \frac{1}{2\pi f_0 C} = \frac{1}{2\pi \times 500 \times 10^3 \times 62.9 \times 10^{-12}} = 5 \times 10^3 \Omega \]

At resonance
\[X_L = X_C \]

Voltage across capacitor/inductor is
\[V_C = V_L = IX_C = 0.75 \times 5 \times 10^3 = 3750 V \]

JULY 2014 5 a) Define the following terms i) Resonance ii) Q factor iii) Selectivity of series RLC circuit iv) Bandwidth 4 Marks

JULY 2014 5 b) Prove that \(f_0 = \sqrt{f_1 f_2} \) where \(f_1 \) and \(f_2 \) are the two half power frequencies of resonant circuit 8 Marks

JULY 2014 5 C) A series RLC circuit has \(R=4 \Omega \), \(L=1 mH \) and \(C= 10 \mu F \). Calculate the Q factor, band width resonant frequency and the half power frequencies \(f_1 \) and \(f_2 \) 8 Marks

Solution:
\[f_r = \frac{1}{2\pi \sqrt{LC}} = \frac{1}{2\pi \sqrt{1 \times 10^{-3} \times 10 \times 10^{-6}}} = \frac{1}{1591.5} Hz \]

\[B = \frac{R}{2\pi L} = \frac{4}{2\pi \times 1 \times 10^{-3}} = 636.62 Hz \]

\[\frac{R}{2L} = \frac{4}{2 \times 1 \times 10^{-3}} = 2 \times 10^3 \]

\(f_1 = \frac{1}{2\pi} \left[-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[-2 \times 10^3 + \sqrt{4 \times 10^6 + 0.1 \times 10^9} \right] \]

\[= \frac{1}{2\pi} \left[-2 \times 10^3 + 10198 \right] = 1305 Hz \]

\(f_2 = \frac{1}{2\pi} \left[\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[2 \times 10^3 + 10198 \right] = 1941 Hz \]

JULY 2013 5 a) For the series RLC circuit shown in Figure find the resonant frequency, half power frequencies, band width Quality factor and 10 Marks

![Figure 1.26: Example](image)

Solution:
Resonant frequency is
\[f_r = \frac{1}{2\pi \sqrt{LC}} = \frac{1}{2\pi \sqrt{0.4 \times 0.5}} = \frac{1}{0.356} Hz \]

Given data may wrongly printed because frequency is always more than 1 Hz

JULY 2012 5 a) Define the following terms i) Resonance ii) Q factor iii) Selectivity of series RLC circuit iv) Bandwidth 6 Marks

DEC 2012 5 b) A series RLC circuit has \(R=10 \Omega \), \(L=0.01 H \) and \(C= 0.01 \mu F \) and it is connected across 10 mV supply. Calculate i) \(f_0 \), ii) \(Q_0 \), iii)band width iv) \(f_1 \) and \(f_2 \) v) \(I_0 \) 10 Marks

Solution:
\[f_o = \frac{1}{2\pi \sqrt{LC}} = \frac{1}{2\pi \sqrt{0.01 \times 0.01 \times 10^{-6}}} = \frac{1}{15915.5} Hz \]

\[Q_o = \frac{2\pi f_0 L}{R} = \frac{2\pi \times 15915.5 \times 0.01}{10} = 100 \]

\[B = \frac{R}{2\pi L} = \frac{10}{2 \times 0.01} = 160 Hz \]

\[\frac{R}{2L} = \frac{10}{2 \times 10 \times 10^{-3}} = 500 \]

Dr. Manjunatha P Professor Dept of E&CE, JNN College of Engineering, Shivanagga
1.4. PARALLEL RESONANT CIRCUIT BY CONSIDERING CAPACITANCE RESISTANCE

JULY 2010
5 b) Derive for resonant circuit

\[f_1 = \frac{1}{2\pi} \left[-\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \right] \]
\[f_2 = \frac{1}{2\pi} \left[\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 + \frac{1}{LC}} \right] \]

May/June 2010
5 C) Determine the i) line current
ii) the power factor and iii) voltage across coil when a coil of resistance 40Ω and inductance of 0.75 H forms a part of series circuit, for which the resonant frequency is 55 Hz If the supply voltage is 250 V 50 Hz 8 Marks

Solution:
\[\omega_r L = 2\pi f_r L = \frac{1}{\omega_r C} = 2\pi \times 55 \times 0.75 = 259.05 \]

\[X_L = \omega L = 2\pi f L = 2\pi \times 50 \times 0.75 = 235.5 \]

\[X_C = 259.05 \times \frac{55}{50} = 284.96 \]

Circuit Impedance at 50 Hz is

\[Z = 40 + J(X_L - X_C) = 40 + J(235.5 - 284.96) = 40 - J49.46 = 63.61\angle -51.04 \]

i) line current
\[I = \frac{V}{R} = \frac{250}{63.61} = 3.93 \text{ A} \]

ii) Power factor is
\[I = \cos \phi = \cos 51.04 = 0.629 \text{leading} \]

iii) voltage across coil
\[V = IZ = I\sqrt{R^2 + X_L^2} = 3.93\sqrt{40^2 + 235.5^2} = 938.77 \]

DEC 2010
5 a) Define the following terms i) Resonance ii) Q factor iii) Selectivity of series RLC circuit iv) Bandwidth 6 Marks

JULY 2010
5 b) Derive for resonant circuit \(f_0 = \sqrt{f_1f_2} \) where \(f_1 \) and \(f_2 \) are the two half power frequencies 8 Marks

Solution:
\[\omega_r L = 2\pi f_r L = \frac{1}{\omega_r C} = 2\pi \times 55 \times 0.75 = 259.05 \]

\[X_L = \omega L = 2\pi f L = 2\pi \times 50 \times 0.75 = 235.5 \]

\[X_C = 259.05 \times \frac{55}{50} = 284.96 \]

Circuit Impedance at 50 Hz is

\[Z = 40 + J(X_L - X_C) = 40 + J(235.5 - 284.96) = 40 - J49.46 = 63.61\angle -51.04 \]

i) line current
\[I = \frac{V}{R} = \frac{250}{63.61} = 3.93 \text{ A} \]

ii) Power factor is
\[I = \cos \phi = \cos 51.04 = 0.629 \text{leading} \]

iii) voltage across coil
\[V = IZ = I\sqrt{R^2 + X_L^2} = 3.93\sqrt{40^2 + 235.5^2} = 938.77 \]
June/July 2009 5 C) A series circuit RLC consists of \(R = 1 \text{K\Omega} \) and an inductance of 100 \(\text{mH} \) in series with capacitance of 10 \(\text{nF} \). If a voltage of 100 V is applied across series combination determine i) Resonant frequency the ii) maximum current in the circuit iii) Q factor, and iii) Half power frequencies 8 Marks

Solution:

\[f_r = \frac{1}{2\pi \sqrt{LC}} = \frac{1}{2\pi \sqrt{100 \times 10^{-3} \times 10 \times 10^{-9}}} = 5 \text{ KHz} \]

ii) Maximum current in the circuit

\[I = \frac{V}{R} = \frac{100}{1 \times 10^3} = 0.1 \text{A} \]

iii) Q factor

\[Q = \frac{2\pi f_r L}{R} = \frac{2\pi \times 5 \times 10^3 \times 100 \times 10^{-3}}{1 \times 10^3} = 3.14 \]

iv) Half power frequencies

\[R \frac{2L}{2L} = \frac{1 \times 10^3}{2 \times 100 \times 10^{-3}} = 5 \times 10^3 \]

\[f_1 = \frac{1}{2\pi} \left[-R \frac{2L}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[-5 \times 10^3 + \sqrt{25 \times 10^6 + 1 \times 10^9} \right] \]

\[= \frac{1}{2\pi} \left[-5 \times 10^3 + 32 \times 10^3 \right] = 27 \text{ KHz} \]

\[f_2 = \frac{1}{2\pi} \left[\frac{R}{2L} + \sqrt{\left(\frac{R}{2L} \right)^2 + \frac{1}{LC}} \right] \]

\[= \frac{1}{2\pi} \left[5 \times 10^3 + 32 \times 10^3 \right] = 37 \text{ KHz} \]