Solutions to problems from Chapter 3

Manjunatha. P

manjup.jnnce@gmail.com
Professor Dept. of ECE
J.N.N. College of Engineering, Shimoga

October 13, 2012

- Consider a systematic $(8,4)$ code whose parity-check equations are
- Consider a systematic $(8,4)$ code whose parity-check equations are

$$
\begin{aligned}
& v_{0}=u_{1}+u_{2}+u_{3} \\
& v_{1}=u_{0}+u_{1}+u_{2} \\
& v_{2}=u_{0}+u_{1}+u_{3} \\
& v_{3}=u_{0}+u_{2}+u_{3}
\end{aligned}
$$

- Consider a systematic $(8,4)$ code whose parity-check equations are

$$
\begin{aligned}
& v_{0}=u_{1}+u_{2}+u_{3} \\
& v_{1}=u_{0}+u_{1}+u_{2} \\
& v_{2}=u_{0}+u_{1}+u_{3} \\
& v_{3}=u_{0}+u_{2}+u_{3}
\end{aligned}
$$

- where $u_{0}, u_{1}, u_{2}, u_{3}$ are message digits and $v_{0} v_{1} v_{2} v_{3}$ are parity check digits. Find the generator and parity check matrices for this code. Show analytically that the minimum distance of this code is 4 .
- Consider a systematic $(8,4)$ code whose parity-check equations are

$$
\begin{aligned}
& v_{0}=u_{1}+u_{2}+u_{3} \\
& v_{1}=u_{0}+u_{1}+u_{2} \\
& v_{2}=u_{0}+u_{1}+u_{3} \\
& v_{3}=u_{0}+u_{2}+u_{3}
\end{aligned}
$$

- where $u_{0}, u_{1}, u_{2}, u_{3}$ are message digits and $v_{0} v_{1} v_{2} v_{3}$ are parity check digits. Find the generator and parity check matrices for this code. Show analytically that the minimum distance of this code is 4 . Solution:
- The information sequences $u=\left[\begin{array}{llll}u_{0} & u_{1} & u_{2} & u_{3}\end{array}\right]$ are encoded into codewords v of length $n=8$, using a systematic encoder. If we assume that the systematic positions in a codeword are the last $k=4$ positions, then codewords have the form
- Consider a systematic $(8,4)$ code whose parity-check equations are

$$
\begin{aligned}
& v_{0}=u_{1}+u_{2}+u_{3} \\
& v_{1}=u_{0}+u_{1}+u_{2} \\
& v_{2}=u_{0}+u_{1}+u_{3} \\
& v_{3}=u_{0}+u_{2}+u_{3}
\end{aligned}
$$

- where $u_{0}, u_{1}, u_{2}, u_{3}$ are message digits and $v_{0} v_{1} v_{2} v_{3}$ are parity check digits. Find the generator and parity check matrices for this code. Show analytically that the minimum distance of this code is 4 . Solution:
- The information sequences $u=\left[\begin{array}{llll}u_{0} & u_{1} & u_{2} & u_{3}\end{array}\right]$ are encoded into codewords v of length $n=8$, using a systematic encoder. If we assume that the systematic positions in a codeword are the last $k=4$ positions, then codewords have the form

$$
v=\left[\begin{array}{llllllll}
v_{0} & v_{1} & v_{2} & v_{3} & u_{0} & u_{1} & u_{2} & u_{3}
\end{array}\right]
$$

- Consider a systematic $(8,4)$ code whose parity-check equations are

$$
\begin{aligned}
& v_{0}=u_{1}+u_{2}+u_{3} \\
& v_{1}=u_{0}+u_{1}+u_{2} \\
& v_{2}=u_{0}+u_{1}+u_{3} \\
& v_{3}=u_{0}+u_{2}+u_{3}
\end{aligned}
$$

- where $u_{0}, u_{1}, u_{2}, u_{3}$ are message digits and $v_{0} v_{1} v_{2} v_{3}$ are parity check digits. Find the generator and parity check matrices for this code. Show analytically that the minimum distance of this code is 4 . Solution:
- The information sequences $u=\left[\begin{array}{llll}u_{0} & u_{1} & u_{2} & u_{3}\end{array}\right]$ are encoded into codewords v of length $n=8$, using a systematic encoder. If we assume that the systematic positions in a codeword are the last $k=4$ positions, then codewords have the form

$$
v=\left[\begin{array}{llllllll}
v_{0} & v_{1} & v_{2} & v_{3} & u_{0} & u_{1} & u_{2} & u_{3}
\end{array}\right]
$$

- and the systematic encoding is specified by

$$
v=u G ; G=[P \mid I]:
$$

- From the given set of parity-check equations we immediately obtain the generator and the parity check matrices.
- From the given set of parity-check equations we immediately obtain the generator and the parity check matrices.
- We can start with the parity check matrix H and recall that every row in H represents one parity check equation, and it has ones in the positions of P^{T} corresponding to the symbols involved in that equation. Thus, we have
- From the given set of parity-check equations we immediately obtain the generator and the parity check matrices.
- We can start with the parity check matrix H and recall that every row in H represents one parity check equation, and it has ones in the positions of P^{T} corresponding to the symbols involved in that equation. Thus, we have

$$
H=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- From the given set of parity-check equations we immediately obtain the generator and the parity check matrices.
- We can start with the parity check matrix H and recall that every row in H represents one parity check equation, and it has ones in the positions of P^{T} corresponding to the symbols involved in that equation. Thus, we have

$$
\begin{aligned}
& H=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \mid & 1 & 0 & 1 & 1
\end{array}\right] \\
& G=\left[\begin{array}{llllllll}
0 & 1 & 1 & 1 \mid & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \mid & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \mid & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- To find the minimum distance analytically, we use the property that the minimum distance of a binary linear code is equal to the smallest number of columns of the parity-check matrix H that sum up to zero. Hence, we find that:
- To find the minimum distance analytically, we use the property that the minimum distance of a binary linear code is equal to the smallest number of columns of the parity-check matrix H that sum up to zero. Hence, we find that:
- there are no two identical columns in $\mathrm{H} d_{\text {min }}>2$
- To find the minimum distance analytically, we use the property that the minimum distance of a binary linear code is equal to the smallest number of columns of the parity-check matrix H that sum up to zero. Hence, we find that:
- there are no two identical columns in $\mathrm{H} d_{\text {min }}>2$
- there are no groups of 3 columns that sum up to $0 d_{\text {min }}>3$
- To find the minimum distance analytically, we use the property that the minimum distance of a binary linear code is equal to the smallest number of columns of the parity-check matrix H that sum up to zero. Hence, we find that:
- there are no two identical columns in $\mathrm{H} d_{\text {min }}>2$
- there are no groups of 3 columns that sum up to $0 d_{\text {min }}>3$
- there exists a group of 4 columns (for example, columns $1,2,3,6$) that sum up to $0 d_{\text {min }}=42$.
- 3.2 Construct an encoder for the code given in Problem 3.1
- 3.2 Construct an encoder for the code given in Problem 3.1 Solution:
- Based on the parity check equations from the previous problem, the systematic encoder for the $(8 ; 4)$ code has the structure as shown in Figure 1.
- 3.2 Construct an encoder for the code given in Problem 3.1 Solution:
- Based on the parity check equations from the previous problem, the systematic encoder for the $(8 ; 4)$ code has the structure as shown in Figure 1.

$$
\begin{array}{ll}
v_{0}=u_{1}+u_{2}+u_{3} & v_{1}=u_{0}+u_{1}+u_{2} \\
v_{2}=u_{0}+u_{1}+u_{3} & v_{3}=u_{0}+u_{2}+u_{3}
\end{array}
$$

Parity register

- 3.3 Construct a syndrome circuit for the code given in Problem 3.1
- 3.3 Construct a syndrome circuit for the code given in Problem 3.1 Solution:
- Syndrome vector is obtained from the received sequence $r=\left[\begin{array}{llll}r_{0} & r_{1} & \ldots & r_{7}\end{array}\right]$ using the parity check matrix of the code:

$$
\begin{gathered}
s=\left[\begin{array}{llll}
s_{0} & s_{1} & s_{2} & s_{3}
\end{array}\right]=r H^{\top}: \\
=\left(r_{0}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{gathered}
$$

- 3.3 Construct a syndrome circuit for the code given in Problem 3.1 Solution:
- Syndrome vector is obtained from the received sequence $r=\left[\begin{array}{llll}r_{0} & r_{1} & \ldots & r_{7}\end{array}\right]$ using the parity check matrix of the code:

$$
\left.\left.\begin{array}{c}
s=\left[\begin{array}{lll}
s_{0} & s_{1} & s_{2}
\end{array} s_{3}\right.
\end{array}\right]=r H^{T}: 1\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right], ~ r_{0}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}\right)\left[\begin{array}{ll}
\\
\end{array}\right.
$$

- By parity check matrix the syndrome digits are:

$$
\begin{array}{ll}
s_{0}=r_{0}+r_{5}+r_{6}+r_{7} & s_{1}=r_{1}+r_{4}+r_{5}+r_{6} \\
s_{2}=r_{2}+r_{4}+r_{5}+r_{7} & s_{3}=r_{3}+r_{4}+r_{6}+r_{7}
\end{array}
$$

$$
\begin{array}{lr}
s_{0}=r_{0}+r_{5}+r_{6}+r_{7} & s_{1}=r_{1}+r_{4}+r_{5}+r_{6} \\
s_{2}=r_{2}+r_{4}+r_{5}+r_{7} & s_{3}=r_{3}+r_{4}+r_{6}+r_{7}:
\end{array}
$$

- 3.3 Determine the weight distribution of the $(8,4)$ linear code given in Problem 3.1. Let the transition probability of a BSC be $\rho=10^{-2}$. Compute the probability of an undetected error of this code.
- 3.3 Determine the weight distribution of the $(8,4)$ linear code given in Problem 3.1. Let the transition probability of a BSC be $\rho=10^{-2}$. Compute the probability of an undetected error of this code. Solution:
- Let A_{i} denote the number of codewords of weight i in an $(\mathrm{n} ; \mathrm{k})$ code C. Then the numbers $A_{0}, A_{1}, \ldots A n$ are called the weight distribution of the code. For any linear code $A 0=1$ (every linear code must contain the all-zero codeword). The first next non-zero element of the weight distribution of a linear code is $A_{d_{\text {min }}}$, corresponding to the number of minimal-weight codewords.
- For the $(8 ; 4)$ code with the minimum distance $d_{\text {min }}=4$, all the codewords except the all-zero and the all-one codeword have minimum weight, that is, the weight distribution is

$$
A_{0}=1, A_{4}=14, A_{8}=1
$$

- 3.3 Determine the weight distribution of the $(8,4)$ linear code given in Problem 3.1. Let the transition probability of a BSC be $\rho=10^{-2}$. Compute the probability of an undetected error of this code. Solution:
- Let A_{i} denote the number of codewords of weight i in an $(\mathrm{n} ; \mathrm{k})$ code C. Then the numbers $A_{0}, A_{1}, \ldots A n$ are called the weight distribution of the code. For any linear code $A 0=1$ (every linear code must contain the all-zero codeword). The first next non-zero element of the weight distribution of a linear code is $A_{d_{\text {min }}}$, corresponding to the number of minimal-weight codewords.
- For the $(8 ; 4)$ code with the minimum distance $d_{\text {min }}=4$, all the codewords except the all-zero and the all-one codeword have minimum weight, that is, the weight distribution is

$$
A_{0}=1, A_{4}=14, A_{8}=1
$$

$$
A_{0}=1, A_{4}=14, A_{8}=1,
$$

$$
A_{0}=1, A_{4}=14, A_{8}=1
$$

- The probability of an undetected error is
$A_{0}=1, A_{4}=14, A_{8}=1$,
- The probability of an undetected error is

$$
P_{u}(E)=\sum_{i=1}^{n} A_{i} p^{i}(1-p)^{n-i}
$$

$$
A_{0}=1, A_{4}=14, A_{8}=1,
$$

- The probability of an undetected error is

$$
\begin{gathered}
P_{u}(E)=\sum_{i=1}^{n} A_{i} p^{i}(1-p)^{n-i} \\
P_{u}(E)=A_{4} p^{4}(1-p)^{4}+A_{8} p^{8}=14 p^{4}\left(1-p^{4}\right)+p^{8}
\end{gathered}
$$

$$
A_{0}=1, A_{4}=14, A_{8}=1,
$$

- The probability of an undetected error is

$$
\begin{gathered}
P_{u}(E)=\sum_{i=1}^{n} A_{i} p^{i}(1-p)^{n-i} \\
P_{u}(E)=A_{4} p^{4}(1-p)^{4}+A_{8} p^{8}=14 p^{4}\left(1-p^{4}\right)+p^{8}
\end{gathered}
$$

- If $p=10^{-2}$ then $P_{u}(E)=1.3448 \times 10^{-7}$.
- Form the generator matrix of the first-order RM code $\mathrm{RM}(1,3)$ of length 8 . What is the minimum distance of the code? Determine its parity check sums and devise majority-logic decoder for the code. Decode the received vector $r=\left(\begin{array}{lll}0 & 1 & 0\end{array} 00101\right)$. Solution:
- Consider the code $\mathrm{R}(1,3)$ with generator matrix:
- Form the generator matrix of the first-order RM code $\mathrm{RM}(1,3)$ of length 8 . What is the minimum distance of the code? Determine its parity check sums and devise majority-logic decoder for the code. Decode the received vector $r=\left(\begin{array}{lll}0 & 1 & 0\end{array} 00101\right)$. Solution:
- Consider the code $R(1,3)$ with generator matrix:
- Code length: $n=2^{m}=2^{3}=8$
- Form the generator matrix of the first-order RM code RM $(1,3)$ of length 8 . What is the minimum distance of the code? Determine its parity check sums and devise majority-logic decoder for the code. Decode the received vector $r=\left(\begin{array}{lll}0 & 1 & 0\end{array} 00101\right)$. Solution:
- Consider the code $R(1,3)$ with generator matrix:
- Code length: $n=2^{m}=2^{3}=8$
- $k(r, m)=1+\binom{3}{1}=1+\frac{3 \cdot 2 \cdot 1}{(2 \cdot 1) \cdot 1}=4$
- Form the generator matrix of the first-order RM code $\mathrm{RM}(1,3)$ of length 8 . What is the minimum distance of the code? Determine its parity check sums and devise majority-logic decoder for the code. Decode the received vector $r=\left(\begin{array}{lll}0 & 1 & 0\end{array} 00101\right)$. Solution:
- Consider the code $R(1,3)$ with generator matrix:
- Code length: $n=2^{m}=2^{3}=8$
- $k(r, m)=1+\binom{3}{1}=1+\frac{3 \cdot 2 \cdot 1}{(2 \cdot 1) \cdot 1}=4$
- Minimum distance: $d_{\text {min }}=2^{m-r}=2^{3-1}=4$
- Form the generator matrix of the first-order RM code $\mathrm{RM}(1,3)$ of length 8. What is the minimum distance of the code? Determine its parity check sums and devise majority-logic decoder for the code. Decode the received vector $r=\left(\begin{array}{lll}0 & 1 & 0\end{array} 00101\right)$. Solution:
- Consider the code $R(1,3)$ with generator matrix:
- Code length: $n=2^{m}=2^{3}=8$
- $k(r, m)=1+\binom{3}{1}=1+\frac{3 \cdot 2 \cdot 1}{(2 \cdot 1) \cdot 1}=4$
- Minimum distance: $d_{\text {min }}=2^{m-r}=2^{3-1}=4$

$$
\mathrm{G}_{\mathrm{RM}}(1,3)=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

- Form the generator matrix of the first-order RM code $\mathrm{RM}(1,3)$ of length 8. What is the minimum distance of the code? Determine its parity check sums and devise majority-logic decoder for the code. Decode the received vector $r=\left(\begin{array}{lll}0 & 1 & 0\end{array} 00101\right)$. Solution:
- Consider the code $R(1,3)$ with generator matrix:
- Code length: $n=2^{m}=2^{3}=8$
- $k(r, m)=1+\binom{3}{1}=1+\frac{3 \cdot 2 \cdot 1}{(2 \cdot 1) \cdot 1}=4$
- Minimum distance: $d_{\text {min }}=2^{m-r}=2^{3-1}=4$

$$
\mathrm{G}_{\mathrm{RM}}(1,3)=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

