0.1 Source Shifting & Transformation Techniques

1 Use source shifting and transformation techniques to find voltage across 2 Ω resistor as shown in Figure 1

Figure 1: 2018-DEC

Solution:

Figure 2

Figure 3

Figure 4

Figure 5 $2\Omega \lessapprox 2\Omega$

The voltage across 2 Ω resistor is

$$I = 3\frac{2}{2+2} = 1.5 A$$

$$V = 1.5 \times 2 = 3V$$

Figure 6

2 Use source shifting and transformation techniques to find voltage across $a,\ b$ resistor as shown in Figure 7

Figure 7: 2018-DEC

Solution:

Figure 8

Figure 9

Figure 10

Figure 11

The voltage across a, b resistor is

$$I = 1\frac{3}{6+3} = 0.3333 \ A$$

$$V = 0.3333 \times 6 = 2V$$

3 Use source shifting and transformation techniques to find voltage across $a,\ b$ resistor as shown in Figure 12

Figure 12: 2018-DEC

Solution:

Figure 13

Figure 14

Figure 16

The voltage across a, b

resistor is

$$V = 6 \times 4 = 24V$$

4 Use source shifting and transformation techniques to find voltage across $a,\ b$ resistor as shown in Figure 12

Solution:

The voltage across 18Ω resistor is

$$i = \frac{5}{25} = 0.2A$$

 $V = 0.2 \times 15 = 3.6V$

DEC 2018 (2017 scheme) DEC 2018 (2015 scheme) 1 a) Reduce the network shown in Figure 17 to a single voltage source in series with a resistance using source shift and source transformations..

Solution:

Figure 17: 2018-DEC

The modified circuit diagram is as shown in Figure 18 by shifting the voltage and current sources.

Figure 18

Figure 19

Figure 20

Figure 21

Figure 23

Figure 24

Figure 25

Figure 26

Aug 2020 (2018 scheme EE) $2~\rm c$) Apply source transformation and shifting method to reduce the network shown in Figure 22 to a single voltage source in series with a resistance.

Solution:

Figure 22: 2018-DEC

Aug 2020 (2018 scheme EE) 2 c) Apply source transformation and shifting method to reduce the network shown in Figure 27 to a single voltage source in series with a resistance.

Solution:

Figure 27: 2018-DEC

 $I = 8.57 \frac{1.312}{1.312 + 7} = 1.352 A$

Figure 32