Chapter 1

Module 1 Basic Concepts

1.1 Introduction

Resistors in series:

Consider two resistors R_{1} and R_{2} in series.

Figure 1.1

$$
\begin{aligned}
V & =V_{1}+V_{2}=I\left(R_{1}+R_{2}\right) \\
\frac{V}{I} & =R_{e q}=R_{1}+R_{2}
\end{aligned}
$$

If n number of resistors $R_{1}, R_{2} \ldots ., R_{n}$ are connected in series then the equivalent resistance Req is

$$
R_{e q}=R_{1}+R_{2} \ldots ., R_{n}
$$

Resistors in parallel:
Consider two resistors are connected in parallel.

Figure 1.2
Current in each branch is

$$
\begin{aligned}
I_{1} & =\frac{V}{R_{1}} \\
I_{2} & =\frac{V}{R_{2}}
\end{aligned}
$$

The current I is

$$
\begin{aligned}
I & =I_{1}+I_{2} \\
& =\frac{V}{R_{1}}+\frac{V}{R_{2}} \\
& =V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\
\frac{I}{V} & =\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{1}{R_{e q}}
\end{aligned}
$$

If n number of resistors are connected in parallel then

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \cdots \frac{1}{R_{n}}
$$

If only two resistors are connected in parallel then Equivalent resistance $R_{e q}$ is

$$
\begin{aligned}
\frac{1}{R_{e q}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{1}+R_{2}}{R_{1} R_{2}} \\
R_{e q} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

KIRCHHOFF'S RULES

1. Current Law or Junction Rule or Kirchhoff'S Current Law (KCL): The algebraic sum of electric currents at any junction in electrical network is always zero.

$$
\sum_{i=1}^{n} I_{n}=0
$$

or The sum of incoming currents towards the junction are equal to sum of outgoing currents at a junction.
This law is a statement of conservation of charge. If current reaching a junction is not equal to the current leaving the junction, charge will not be conserved.
2. II Law or Loop Law or Junction Rule: Kirchhoff'S Voltage Law (KVL): The algebraic sum of changes in potential around any closed loop involving resistors and cells in the loop is zero.
This law represents conservation of energy. If the sum of potential changes around a closed loop is not zero, unlimited energy could be gained by repeatedly carrying a charge around a loop.

Sign convention for the application of Kirchoff's law

1. While traversing in a loop the direction of current is in the same path then the potential drop at a resistance is -IR while in the in opposite direction it is $+I R$.
2. The emf is taken negative when we traverse from positive to negative terminal of the cell. The emf is taken positive when we traverse from negative to positive terminal of the cell.

Example

Figure 1.3
KCL for the junction at node 'a' is
Incoming current at node 'a' is I_{3} and outgoing currents are I_{1} and I_{2}.

$$
I_{3}=I_{1}+I_{2}
$$

sum of the currents meeting at node 'a' is zero OR

$$
I_{3}-I_{1}-I_{2}=0
$$

For the node ' d '

$$
\begin{array}{r}
I_{1}+I_{2}=I_{3} \\
I_{1}+I_{2}-I_{3}=0
\end{array}
$$

For the loop 1 abcda

$$
\begin{align*}
-4 I_{1}+9-3 I_{3} & =0 \\
-4 I_{1}+9-3\left(I_{1}+I_{2}\right) & =0 \\
7 I_{1}+3 I_{2} & =9 \tag{1.1}
\end{align*}
$$

For the loop 2 afeda

$$
\begin{align*}
8-5 I_{2}+9-3 I_{3} & =0 \\
17-5 I_{2}-3\left(I_{1}+I_{2}\right) & =0 \\
3 I_{1}+8 I_{2} & =17 \tag{1.2}
\end{align*}
$$

From Equation 1.1 and 1.2

$$
\begin{aligned}
7 I_{1}+3 I_{2} & =9 \\
3 I_{1}+8 I_{2} & =17
\end{aligned}
$$

Solving the above equations

$$
\begin{aligned}
I_{1} & =0.446 \mathrm{~A} \\
I_{2} & =1.95 \mathrm{~A}
\end{aligned}
$$

Applying Node voltage method

$$
\begin{gathered}
\frac{V_{a}}{4}+\frac{V_{a}-9}{3}+\frac{V_{a}+8}{5}=0 \\
V_{a}\left[\frac{1}{4}+\frac{1}{3}+\frac{1}{5}\right]-3+\frac{8}{5}=0 \\
V_{a}=1.787 \\
I_{1}=\frac{V_{a}}{4}=\frac{1.787}{4}=0.4464 \\
I_{2}=\frac{V_{a}+8}{5}=\frac{1.787+8}{5}=1.954
\end{gathered}
$$

Branch Current Rule

Figure 1.4
When two resistors are connected in parallel:
Branch Current is

$$
=\text { Main Current } \frac{\text { Resistance of other branch }}{\text { Sum of resistances }}
$$

$$
\begin{aligned}
& I_{1}=I \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=I \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

Also it is given by

$$
\begin{aligned}
& I_{1}=I \frac{R_{P}}{R_{1}} \\
& I_{2}=I \frac{R_{P}}{R_{2}}
\end{aligned}
$$

where I is the main current and R_{P} is the parallel branch effective resistance.

$$
\begin{aligned}
R_{P} & =\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
I & =\frac{V}{R_{P}+R_{3}}
\end{aligned}
$$

Example 1

Find the current i_{1} and i_{2} for the circuit shown in Figure

Figure 1.5
Solution:
12Ω and 4Ω are in parallel

$$
\begin{aligned}
R_{T} & =\frac{12 \times 4}{12+4}+2=3+2 \\
& =5 \Omega
\end{aligned}
$$

Total Current I is

$$
\begin{aligned}
I & =\frac{E}{R_{T}+r}=\frac{12}{5+1} \\
& =2 A
\end{aligned}
$$

Using Method 1

$$
\begin{aligned}
& i_{1}=2 A \frac{4}{4+12}=0.5 A \\
& i_{2}=2 A \frac{12}{4+12}=1.5 \mathrm{~A}
\end{aligned}
$$

Using Method 2

$$
\begin{aligned}
& i_{1}=2 A \frac{3}{12}=0.5 \mathrm{~A} \\
& i_{2}=2 A \frac{3}{4}=1.5 \mathrm{~A}
\end{aligned}
$$

Example 2

Find the magnitude of I in ampere

Figure 1.6
Solution:

Using Method 1

Figure 1.7

$$
I=1 A \frac{6.6666}{60+6.6666} \simeq 0.1 A
$$

Using Method 2

When the Resistors 10, 15 and 60Ω, are connected in parallel hence

$$
\begin{aligned}
\frac{1}{R_{T}} & =\frac{1}{10}+\frac{1}{20}+\frac{1}{60} \\
& =\frac{6+3+1}{60}=\frac{1}{6} \\
R_{T} & =6
\end{aligned}
$$

Current I_{2} is

$$
\begin{aligned}
I & =1 A \frac{6}{60} \\
& =0.1
\end{aligned}
$$

Find the power dissipated in the 3Ω resistor

Figure 1.8
Solution: Ans (b): The given circuit is redrawn.

Figure 1.9
3 and 6Ω are in parallel which is in series with 2Ω

$$
2+(3 \| 6)=2+\frac{6 \times 3}{6 \times 3}=2+2=4 \Omega
$$

4Ω and 4Ω are in parallel which is in series with 1Ω

$$
1+(4 \| 4)=1+\frac{4 \times 4}{4 \times 4}=1+2=3 \Omega
$$

The current I is

$$
\frac{4.5}{3}=1.5 A
$$

$1 \Omega 4.5 \mathrm{~V}$

Figure 1.10
The current I_{1} is

$$
I_{1}=1.5 A \frac{4}{4+4}=0.75 A
$$

The current through 3Ω is

$$
I_{3}=0.75 A \frac{6}{3+6}=0.5 A
$$

The power dissipated in the 3Ω is

$$
\left(I_{3}\right)^{2} \times 3=(0.5)^{2} \times 3=0.75 W
$$

For the circuit shown in Figure 1.11 find the value of current I_{2}

Figure 1.11
Solution: The total Resistance of the network is

$$
\begin{aligned}
\frac{1}{R_{T}} & =\frac{1}{10}+\frac{1}{15}+\frac{1}{30} \\
& =\frac{6}{30}=\frac{1}{5} \\
R_{T} & =5
\end{aligned}
$$

Current I_{2} is

$$
\begin{aligned}
I_{2} & =1.2 A \frac{5}{15} \\
& =0.4
\end{aligned}
$$

Find the current I flowing in the circuit as shown in Figure 1.12

Figure 1.12
Solution:
The 4Ω and 4Ω are in parallel which combination is in series with 4Ω

$$
\frac{4 \times 4}{4+4}=2 \Omega
$$

Figure 1.13
Again 4Ω and 6Ω are in parallel

$$
\frac{4 \times 6}{4+6}=2.4 \Omega
$$

Figure 1.14
Current from battery is

$$
I=\frac{4}{2.4+1.6}=1 \mathrm{~A}
$$

The current I is

$$
=1 A \frac{4}{4+6}=0.4 A
$$

Find the magnitude of the current I for the circuit shown in Figure 1.15 is

Figure 1.15
Solution: When the Resistors 10,15 and 30Ω, are connected in parallel hence

$$
\begin{aligned}
\frac{1}{R_{T}} & =\frac{1}{10}+\frac{1}{20}+\frac{1}{60} \\
& =\frac{6+3+1}{60}=\frac{1}{6} \\
R_{T} & =6
\end{aligned}
$$

Current I_{2} is

$$
\begin{aligned}
I & =1 A \frac{6}{60} \\
& =0.1
\end{aligned}
$$

1.2 Source Transformation Technique

Figure 1.16

$$
\begin{aligned}
V_{S} & =I_{S} R \\
I_{S} & =\frac{V_{S}}{R}
\end{aligned}
$$

Q 1) In the circuit below, use a source transformation to determine v_{O}.

Solution:

Figure 1.17
The transformed circuit is as shown in Figure 1.18. The current in the circuit is 0.857 A . The voltage across the resistor 8Ω is

$$
0.857 \times 8=6.857 \mathrm{~V}
$$

Figure 1.18
Q 2) For the circuit shown in Figure. 1.19, use a source transformation to determine v_{O}.

Solution:

Figure 1.19

Figure 1.20

4 and 8Ω are in parallel

$$
R=\frac{4 \times 8}{4+8}=2.66 \Omega
$$

Figure 1.21
The current in the circuit

$$
I=\frac{8}{10.667}=0.75
$$

The voltage across the resistor 8Ω

$$
0.75 \times 8=6 V
$$

Q 3) For the circuit shown in Figure determine the V_{0} using source transformation.

Figure 1.22
Solution:
Replace the current source and parallel resistance by voltage source in series with resistor

$$
V=I \times R=3 \times 4=12 V
$$

Figure 1.23
Now 4Ω and 2Ω are in series which are replaced by single resistance 6Ω

Figure 1.24
Replace the voltage sources by current source in parallel with resistance 6Ω and 3Ω

Figure 1.25
Replace two current sources by single current source and two parallel resistors 6Ω and 3Ω with single resistance. Current sources are in opposite directions. Again replace current source by voltage source in series with resistor 2Ω

$$
R=\frac{6 \times 3}{6 \times 3}=\frac{18}{9}=2 \Omega
$$

The current in the circuit is

$$
I=\frac{4}{8+2}=\frac{4}{10}=0.4 A
$$

The voltage drop across 8Ω is

$$
V=0.4 A \times 8=3.2 V
$$

Figure 1.26

Q 4) In the circuit shown in Figure 1.17 determine the current i_{1} through 5Ω resistor by source transformation.

Figure 1.27
Solution: KVL cannot be applied due to the presence of current source. Transform the current source to voltage source.

$$
V=I \times R=1 \times 10=10 V
$$

Figure 1.28
Now the 10Ω and 5Ω are in series

Figure 1.29
Replace the voltage source by current source. First current source is $I=\frac{V}{R}=\frac{10}{5}=2 A$ and the second source is and each resistors are in parallel with respective current sources $I=\frac{V}{R}=\frac{10}{15}=\frac{2}{3} A$

Figure 1.30
Now two current sources are in parallel they can be added and total current is

$$
I=2+\frac{2}{3}=\frac{8}{3} A
$$

The parallel resistances are added

$$
R=\frac{5 \times 15}{5+15}=\frac{15}{4} \Omega
$$

The equivalent circuit is as shown in Figure. The current source is replaced by voltage source which is as shown in Figure. The new voltage source is

$$
V=I \times R=\frac{8}{3} \times \frac{15}{4}=10 V
$$

The total resistance in the circuit is

$$
R=\frac{15}{4}+5=\frac{35}{4}=3.75+5=8.75 \Omega
$$

Current i_{1} through 5Ω resistor is

$$
I=\frac{V}{R}=\frac{10}{35 / 4}=1.142 A
$$

Figure 1.31
The other method to find current in the above circuit is

$$
\begin{gathered}
i_{1}=\text { Currrent } \times \frac{\text { Resistance in other baranch }}{\text { Total Resistance }} \\
i_{1}=\frac{8}{3} \times \frac{3.75}{3.75+5}=1.142 \mathrm{~A}
\end{gathered}
$$

Q 5) In the circuit shown in Figure 1.32 determine the current I

Figure 1.32
Solution:
KVL cannot be applied directly due to the presence of current source. Replace the current source into voltage source in series with 8Ω and current source as

$$
V=2 \times 8=16 \mathrm{Volts}
$$

Now the 8Ω and 4Ω are in series which are placed in series with voltage source.

Figure 1.33
Replace the voltage source into current source in parallel with 12Ω

Figure 1.34
12Ω and 6Ω are in parallel. Current source can be replaced by voltage source the details are as shown in Figure

$$
\begin{gathered}
R=\frac{6 \times 12}{6+12}=4 \Omega \\
V=I \times R=\frac{4}{3} \times 4=\frac{16}{3} \mathrm{Volts}
\end{gathered}
$$

Figure 1.35
Current I is

$$
\begin{aligned}
\frac{16}{3}+10-7 \times I & =0 \\
\frac{16+30}{3}-7 I & =0 \\
7 I & =\frac{46}{3} \\
I & =\frac{46}{3 \times 7}=2.19 \mathrm{~A}
\end{aligned}
$$

Q 6) In the circuit shown in Figure 1.17 determine current I by source transformation.

Figure 1.36
Solution:
First the parallel resistance is replaced by single resistor which is as shown in Figure

$$
R=\frac{20 \times 30}{20+30}=\frac{600}{50}=12 \Omega
$$

Figure 1.37
Now replace the current source in parallel with resistor by voltage source in series with resistor, which is as shown in Figure

Figure 1.38
The current I in the circuit is

$$
I=\frac{5-1.2}{5+12}=\frac{3.8}{17}=0.224 A
$$

Q 7) In the circuit shown in Figure 1.39 determine the voltage v_{0} across 100Ω resistor

Figure 1.39

Solution:

Replace the current source by voltage source in series with 100Ω resistor which is as shown in Figure.

Figure 1.40
Voltage sources of 8 and 3 are in series which are replaced by single voltage source.

Figure 1.41
Replace the voltage source of 11 volts with current source in parallel with 100Ω resistor.

$$
I=\frac{11}{100}=110 m A
$$

Figure 1.42
100 mA current source with 100Ω resistor and 110 mA current source with 100Ω resistor are in parallel which are replaced by single current source and single resistor as

Figure 1.43
Current through 100Ω resistor is

$$
I=210 \frac{50}{50+100}=70 \mathrm{~mA}
$$

Voltage across the 100Ω resistor is

$$
V=I \times R=70 \times 10^{-3} \times 100=7 V
$$

Q 8) In the circuit shown in Figure 1.44 determine the current in the 12Ω resistor using source transformation method

Figure 1.44
Solution:
Replace the current source and parallel resistor 4Ω by voltage source in series with resistor 4Ω

$$
V=I \times R=30 \times 4=120 V
$$

Figure 1.45
Replace the voltage sources and source resistors by single voltage source in series with single resistor 4 Ω

$$
V=60+120=180 V
$$

Figure 1.46
Replace 240 V voltage source in series resistor 24 Ω by a current source and 180 V voltage source in series resistor 6Ω by a current source

$$
\begin{aligned}
& I=\frac{V}{R}=\frac{240}{24}=10 A \\
& I=\frac{V}{R}=\frac{180}{6}=30 A
\end{aligned}
$$

Figure 1.47
Current sources $10 \mathrm{~A}, 48 \mathrm{~A}$, and 30 A are in parallel. Replace these by single current source. Also replace parallel resistor by a single resistor.

$$
\begin{aligned}
& I=10+48-30 A=28 A \\
& R=\frac{24 \times 6}{24+6}=\frac{144}{30}=4.8 \Omega
\end{aligned}
$$

Figure 1.48
The current in 12Ω resistor is sources $10 \mathrm{~A}, 48 \mathrm{~A}$, and 30 A are in parallel. Replace by single current source. Replace parallel resistors by a single resistor.

$$
I=\frac{134.4}{12+4.8}=8 A
$$

Q 9) In the circuit shown in Figure 1.52 determine the current in the 3Ω resistor using source transformation method

Figure 1.49
Solution:
Replace the 2 A current source and parallel resistor of 2Ω by voltage source in series with resistor 2Ω similarly replace the 1 A current source and parallel resistor of 2Ω by voltage source in series with resistor 2Ω

$$
\begin{aligned}
& V=2 \times 2=4 V \\
& V=1 \times 2=2 V
\end{aligned}
$$

Figure 1.50
4 volts and 2 volts are in series and are added similarly $2 \Omega 2 \Omega$ resistors are in series and are added. Replace the 10 V voltage source by current source in parallel resistor of 2Ω.

$$
I=\frac{10}{2}=5 A
$$

Figure 1.51
5Ω and 2Ω resistors are in parallel and are replaced by single resistor.

$$
R=\frac{2 \times 5}{2+5}=1.428 \Omega
$$

Figure 1.52

Figure 1.53
The current through 3Ω is determined by applying KVL in the loop as:

$$
I=\frac{7.14-6}{8.428}=0.135 A
$$

Q 10) In the circuit shown in Figure 1.54 determine the current I_{x} using source transformation method

Figure 1.54
Solution:
Replace the voltage source of 10 V by current source in parallel with resistor of 200Ω

$$
I=\frac{10}{200}=50 m A
$$

Figure 1.55

Replace the parallel resistors of 200 and 80Ω by a single resistor

$$
I=\frac{200 \times 80}{200+80}=57.1 \Omega
$$

Figure 1.56
Replace the current source of 50 mA and parallel resistor of 57.14Ω by voltage source

$$
V=50 \times 10^{-3} \times 57.14=2.857 V
$$

Figure 1.57
$30 \Omega, 57.14 \Omega$ and 10Ω are in series replace by single resistor

Figure 1.58
Replace the voltage source of 2.857 V by current source in parallel with resistor of 97.15Ω

$$
I=\frac{2.857}{97.15}=29.41 \mathrm{~mA}
$$

Figure 1.59
29.41 mA and 10 mA are in opposite directions and are in parallel, replace by single current source. Resistors $97.15 \Omega 60 \Omega$ are in parallel with single resistor of 37Ω

$$
\begin{gathered}
I=29.41-10=19.41 \mathrm{~mA} \\
\quad R=\frac{97.15 \times 60}{97.15+60}=37 \Omega
\end{gathered}
$$

Dr. Manjunatha P Prof., Dept of ECE, JNN College of Engg Shimoga manjup.jnnce@gmail.com

Figure 1.65
The current through I_{x} is determined by applying KVL in the loop as:

$$
\begin{aligned}
60-8 I_{x}+15 I_{x}-25 I_{x} & =0 \\
18 I_{x} & =60 \\
I_{x} & =\frac{60}{18}=3.333 \mathrm{~A}
\end{aligned}
$$

Q 12) In the circuit shown in Figure ?? determine the current I_{1}

Figure 1.66

Solution:

For the given circuit there is a current source of 3A. Shift the current source between resistors $1 \Omega 2 \Omega$. The modified circuit is as shown in Figure 1.67

Figure 1.67
Convert current sources into voltage sources in series with resistor 1Ω and 2Ω.

Figure 1.68

Figure 1.69
Now convert voltage sources into current sources in parallel with resistors as shown in Figure

Figure 1.70
Current source 1 A and $\frac{6}{5} \mathrm{~A}$ are in opposite directions, replace by single current source and also replace parallel resistors 3Ω and 5Ω by a single resistor

$$
\begin{gathered}
I_{e q}=\frac{6}{5}-1=\frac{1}{5}=0.2 \mathrm{~A} \\
R_{e q}=\frac{3 \times 5}{3+5}=\frac{15}{8}=1.875 \Omega
\end{gathered}
$$

Figure 1.71
Replace the 0.2 A current source and parallel resistor 1.875Ω by voltage source in series with 1.875Ω resistor

Figure 1.72
Apply KVL for the loop

$$
\begin{aligned}
0.375-6.875 i_{1}-5 i_{1} & =0 \\
0.375-11.875 i_{1} & =0 \\
i_{1}=\frac{11.875}{0.375}=31.67 A &
\end{aligned}
$$

1.3 Question Papers

2019 Dec (2018 Scheme) 1 a). Using source transformation technique find the current through 5Ω resistor for the circuit shown in Figure 1.73.

Figure 1.73: 2019-Dec-Question Paper

Solution:

Figure 1.74

Figure 1.75

Figure 1.76
The current through 5Ω resistor is

$$
I=\frac{12-5}{17}=0.4117 \mathrm{~A}
$$

JAN-2018 Use source transformation to convert as shown in Figure 1.77 to a single current source in parallel with single resistor

Figure 1.77: JAN-2018-Question Paper
Solution:

The equivalent current source is

JULY-2017 Calculate the current through 2Ω resistor for the circuit as shown in Figure 1.78 using source transformation

Figure 1.78: JULY-2017-Question Paper
Solution: Replace the each current source 5 A in parallel with 3Ω resistor by voltage source, 1 A in parallel with 9Ω resistor by voltage source and $3 V_{x}$ current sources in parallel with resistor of 17Ω by voltage source which is as shown in Figure 1.79

$$
\begin{aligned}
& V_{1}=I \times R=5 \times 3=15 V \\
& V_{2}=I \times R=9 \times 1=9 V \\
& V_{1}=I \times R=3 V_{x} \times 17=51 V
\end{aligned}
$$

Figure 1.79: JULY-2017-Question Paper
From the figure it is observed that $V_{x}=2 \times I$
Replace the voltage source of 15 V in series $(3+4) \Omega$ resistor by current source

$$
I=\frac{15}{7}=2.14 A
$$

Figure 1.80: JULY-2017-Question Paper
7Ω and 7Ω are in parallel replace by single resistor

$$
R=\frac{7 \times 7}{7+7}=3.5 \Omega
$$

Figure 1.81: JULY-2017-Question Paper
Replace the current by source voltage source in series 3.5Ω resistor

$$
V=2.14 \times 3.5=7.49 V
$$

Figure 1.82: JULY-2017-Question Paper
From the figure it is observed that $V_{x}=2 \times I$ Apply the KVL for the circuit by using $V_{x}=2 \times I$

$$
\begin{aligned}
7.49-51 V_{x}-9-29.5 I & =0 \\
-1.51-51 \times 2 I-29.5 I & =0 \\
-1.51-102 I-29.5 I & =0 \\
-1.51-131 I & =0 \\
I=\frac{1.51}{131} & =11.5 \mathrm{~mA}
\end{aligned}
$$

JULY-2016 Using source transformation find the current through R_{L} in the circuit as shown in Figure 1.83

Figure 1.83: JULY-2016-Question Paper Solution:

Solution:

Replace the each voltage sources into current sources in parallel with resistor which is as shown in Figure 1.84

Figure 1.84: JULY-2016-Question Paper
Each current sources are in parallel, add these current source and replace the parallel resistor by single resistor, the modified circuit is as shown in Figure 1.85

$$
\begin{gathered}
I=I_{1}+I_{2}+I_{3}=\frac{22}{5}+4+3=11.4 A \\
\frac{1}{R}=\frac{1}{5}+\frac{1}{12}+\frac{1}{4}=0.533 \\
R=\frac{1}{0.533}=1.875
\end{gathered}
$$

Figure 1.85: JULY-2016-Question Paper
Current source in parallel with resistor is replaced voltage source which is as shown in Figure 1.86

Figure 1.86: JULY-2016-Question Paper
Current through R_{L} is, by KVL

$$
\begin{gathered}
21.375-I \times 11.875=0 \\
I=\frac{21.375}{11.875}=1.8 A
\end{gathered}
$$

JULY-2014 Using source transformation find the power delivered by 50 V source i given network of as shown in Figure 1.87

Figure 1.87: JULY-2014-Question Paper

Solution:

The redrawn circuit is as shown in Figure

Figure 1.88
Replace the 10 V voltage source in series with 3Ω by current source in parallel with 3Ω resistor.

$$
I=\frac{V}{I}=\frac{10}{3} A
$$

Figure 1.89
Replace current sources 10 A and in parallel with $\frac{10}{3}$ A by single current source and parallel resistors by single resistor

$$
I=10+\frac{10}{3}=\frac{40}{3}
$$

$$
R=\frac{2 \times 3}{2+3}=\frac{6}{3} \Omega
$$

Figure 1.90
Replace the current source $\frac{40}{3} \mathrm{~A}$ in parallel with $\frac{10}{3}$ resistor by a voltage source in series with resistor

$$
R=\frac{6}{3}=1.2 \Omega
$$

Figure 1.91
By applying KVL in the circuit is

$$
\begin{gathered}
50-16-I \times 6.2=0 \\
I=\frac{34}{6.2}=5.48 A
\end{gathered}
$$

The power delivered by 50 V source is

$$
P=50 \times I=50 \times 5.48=274 W
$$

