0.1 Star Delta Transformation

Figure 1

$$
\begin{align*}
& R_{x}+R_{y}=\frac{R_{x y}\left(R_{y z}+R_{z x}\right)}{R_{x y}+R_{y z}+R_{z x}} \tag{1}\\
& R_{y}+R_{z}=\frac{R_{y z}\left(R_{z x}+R_{x y}\right)}{R_{x y}+R_{y z}+R_{z x}} \tag{2}\\
& R_{z}+R_{x}=\frac{R_{z x}\left(R_{x y}+R_{y z}\right)}{R_{x y}+R_{y z}+R_{z x}} \tag{3}
\end{align*}
$$

Equation (1)-(2)

$$
\begin{equation*}
R_{x}-R_{z}=\frac{R_{x y} R_{z x}-R_{y z} R_{z x}}{R_{x y}+R_{y z}+R_{z x}} \tag{4}
\end{equation*}
$$

Equation (3)+(4)

$$
\begin{align*}
2 R_{x} & =\frac{2 R_{x y} R_{z x}}{R_{x y}+R_{y z}+R_{z x}} \\
R_{x} & =\frac{R_{x y} R_{x z}}{R_{x y}+R_{y z}+R_{z x}} \tag{5}
\end{align*}
$$

Similarly

$$
\begin{align*}
& R_{y}=\frac{R_{y z} R_{y x}}{R_{x y}+R_{y z}+R_{z x}} \tag{6}\\
& R_{z}=\frac{R_{z y} R_{z x}}{R_{x y}+R_{y z}+R_{z x}} \tag{7}
\end{align*}
$$

Star to Delta Transformation

$$
\begin{aligned}
& R_{x} R_{y}=\frac{R^{2}{ }_{x y} R_{x z} R_{y z}}{\left(\sum R_{x y}\right)^{2}} \\
& R_{y} R_{z}=\frac{R_{y z}^{2} R_{y x} R_{z x}}{\left(\sum R_{x y}\right)^{2}} \\
& R_{z} R_{x}=\frac{R_{z x}^{2} R_{y x} R_{y z}}{\left(\sum R_{x y}\right)^{2}}
\end{aligned}
$$

$R_{x} R_{y}+R_{y} R_{z}+R_{z} R_{x}=\frac{R_{x y} R_{y z} R_{z x}\left(R_{x y}+R_{y z}+R_{z x}\right)}{\left(\sum R_{x y}\right)^{2}}$

$$
\begin{gather*}
R_{x} R_{y}+R_{y} R_{z}+R_{z} R_{x}=\frac{R_{x y} R_{y z} R_{z x}\left(R_{x y}+R_{y z}+R_{z x}\right)}{\left(\sum R_{x y}\right)^{2}} \\
R_{x} R_{y}+R_{y} R_{z}+R_{z} R_{x}=\frac{R_{x y} R_{y z}}{\sum R_{y z}} R_{z x}=R_{x} R_{y z} \\
R_{y z}=\frac{R_{x} R_{y}+R_{y} R_{z}+R_{z} R_{x}}{R_{x}} \\
R_{y z}=R_{y}+R_{z}+\frac{R_{y} R_{z}}{R_{x}} \tag{8}\\
R_{x y}=R_{x}+R_{y}+\frac{R_{x} R_{y}}{R_{z}} \tag{9}\\
R_{z x}=R_{z}+R_{x}+\frac{R_{z} R_{x}}{R_{y}} \tag{10}
\end{gather*}
$$

Q 1) 2020-Aug (2018 scheme ECE) 2020-Aug (2018 scheme EE) 2017-June Determine the Input resistance between PQ using star-delta transformation

Figure 2
Solution:
In the given circuit $6 \Omega, 6 \Omega$ and 18 connected between A, B and C are in delta connection, convert this into star network. The details are as shown in Figure 3

$$
\begin{aligned}
R_{A} & =\frac{R_{A B} \times R_{A C}}{\sum R_{A B}} \\
R_{A} & =\frac{6 \times 18}{30}=3.6 \Omega \\
R_{B} & =\frac{6 \times 6}{30}=1.2 \Omega \\
R_{C} & =\frac{6 \times 18}{30}=3.6 \Omega
\end{aligned}
$$

Dr. Manjunatha P Prof., Dept of ECE, JNN College of Engg Shimoga manjup.jnnce@gmail.com

Figure 3
In the circuit 5Ω and 3.6Ω are in series, 6Ω and 1.2Ω are in series and $3.6 \Omega 18 \Omega$ and 6Ω are in series.

Figure 4
$7.2 \Omega 27.6 \Omega$ are in parallel, which is in series with 8.6Ω. The net resistance is.

$$
\begin{aligned}
R_{P Q} & =8.6+\frac{7.2 \times 27.6}{7.2+27.6} \\
& =8.6+5.71 \\
& =14.31 \Omega
\end{aligned}
$$

Q 2) For the circuit shown in Figure shown in Figure 5 determine the equivalent resistance between any two terminals.
Solution:

Figure 5
Solution:
In the given $4,4,4$, and Ω are in star network, convert this star network to delta network

$$
\begin{aligned}
& R_{x y}=R_{x}+R_{y}+\frac{R_{x} \times R_{y}}{R_{z}}=8+4=12 \Omega \\
& R_{x y}=4+4+\frac{4 \times 4}{4}=8+4=12 \Omega \\
& R_{y z}=4+4+\frac{4 \times 4}{4}=8+4=12 \Omega \\
& R_{z x}=4+4+\frac{4 \times 4}{4}=8+4=12 \Omega
\end{aligned}
$$

As shown in the Figure 6, by looking by any two terminals 12Ω is parallel with 4Ω

$$
=\frac{12 \times 4}{12+4}=3 \Omega
$$

Figure 6
By looking from XZ terminal the 3Ω resistance is in parallel with series connection of 3Ω and 3Ω resistance.

$$
R_{X Z}=\frac{3 \times 6}{3+6}=2 \Omega
$$

Q 3) For the circuit shown in Figure shown in Figure 7 determine the equivalent resistance between (1)A and B and (2) A and N .

Figure 7
Solution:
Convert the internal star network to delta
network

$$
\begin{aligned}
& R_{A B}=R_{A}+R_{B}+\frac{R_{A} R_{B}}{R_{C}} \\
& R_{A B}=2+30+\frac{2 \times 30}{4}=32+15=47 \Omega \\
& R_{B C}=4+30+\frac{4 \times 30}{2}=34+60=94 \Omega \\
& R_{C A}=4+2+\frac{4 \times 2}{30}=6+0.266=6.266 \Omega
\end{aligned}
$$

Figure 8
In the circuit 10Ω is parallel with 47Ω

$$
=\frac{10 \times 47}{10+47}=8.245 \Omega
$$

Similarly 94Ω is parallel with 15Ω

$$
=\frac{94 \times 15}{94+15}=12.93 \Omega
$$

Similarly 6Ω is parallel with 6.266Ω

$$
=\frac{6 \times 6.266}{6+6.266}=3.06 \Omega
$$

The details are as shown in Figure ??

Figure 9
While looking from terminal AB the resistances 12.93 and Ω and 3.06Ω are in series and this resistance is parallel with 8.245Ω

$$
\begin{gathered}
=12.93+3.06=16 \Omega \\
R_{A B}=\frac{8.245 \times 16}{8.245+16}=5.44 \Omega
\end{gathered}
$$

(ii) The resistance between A and N is

Figure 10
From the Figure 10 by looking from the terminal resistance between A and N , there is a delta network between NCB which is replaced by star network.

$$
\begin{aligned}
R_{x} & =\frac{R_{x y} R_{x z}}{R_{x y}+R_{y z}+R_{z x}} \\
R_{B} & =\frac{30 \times 15}{30+15+4}=9.18 \\
R_{C} & =\frac{4 \times 15}{30+15+4}=1.225 \\
R_{N} & =\frac{30 \times 4}{30+15+4}=2.5
\end{aligned}
$$

Figure 11
In the network of 6Ω and 1.225Ω are in series, 10Ω and 9.18Ω are in series. The details are as shown in Figure 12

Figure 12

Figure 13
The resistances 7.225Ω and 19.18Ω are in
parallel

$$
=\frac{7.225 \times 19.18}{7.225 \times 19.18}=5.25 \Omega
$$

The details are as shown in Figure 14

Figure 14
The resistances 2.5Ω and 5.25Ω are in series. The resistances $2 \Omega 7.75 \Omega$ are in in parallel and the net resistance between A and N is

$$
=\frac{2 \times 7.75}{2+7.75}=1.59 \Omega
$$

Q 4) Determine the equivalent resistance between terminals A and B

Figure 15
Solution:

$$
\begin{aligned}
R_{A} & =\frac{4 \times 6}{20}=1.2 \Omega \\
R_{B} & =\frac{4 \times 10}{20}=2 \Omega \\
R_{C} & =\frac{6 \times 10}{20}=3 \Omega
\end{aligned}
$$

$$
R_{A}=\frac{10 \times 15}{45}=3.33 \Omega
$$

$$
R_{B}=\frac{10 \times 20}{45}=4.44 \Omega
$$

$$
R_{C}=\frac{20 \times 15}{45}=6.667 \Omega
$$

Figure 16

Figure 17

$$
\begin{aligned}
R_{A B} & =1.2+\frac{12.44 \times 18.667}{12.44+18.667}+3.3 \Omega \\
& =1.2+\frac{232.217}{12.44+31.187}+3.3 \Omega \\
& =1.2+7.446+3.3=11.94 \Omega
\end{aligned}
$$

Q 5) 2018-Dec (2010 scheme) Find the resistance of the circuit shown in Figure shown in Figure 5 between A and B

Figure 18
Solution:
In the given network 18 there is delta network between xyz and it is replaced by star network.

$$
\begin{aligned}
R_{X} & =\frac{20 \times 5}{40}=2.5 \Omega \\
R_{Y} & =\frac{20 \times 15}{40}=7.5 \Omega \\
R_{Z} & =\frac{15 \times 5}{40}=1.875 \Omega
\end{aligned}
$$

Figure 19
In the circuit $19,10 \Omega 2.5 \Omega$ are in series, similarly $5 \Omega 7.5 \Omega$ are in series. The details are as shown in Figure 20

Figure 20

In the circuit 20 at NPB $37.5 \Omega 3.875 \Omega$ and 30 are in delta connection, convert into star network. The details are as shown in Figure 21

Figure 21
In the circuit $21,12.5 \Omega, 2.045 \Omega$ are in series, similarly $1.635 \Omega 15 \Omega$ are in series. The details are as shown in Figure 22

Figure 22
In the circuit $2214.54 \Omega, 16.63 \Omega$ are in parallel, which is in series with similarly 15.76Ω. The net resistance between AB is.

$$
\begin{aligned}
R_{A B} & =15.76+\frac{14.54 \times 16.63}{14.54+16.63} \\
& =15.76+7.76 \\
& =23.52 \Omega
\end{aligned}
$$

Q 6) For the circuit shown in Figure shown in Figure 5 determine the current i using star delta transformation.

Solution:

Figure 23
As shown in Figure 23 there is delta network between ABC , convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{1 \times 1}{1+1+1}=0.333 \Omega \\
R_{B} & =\frac{1 \times 1}{1+1+1}=0.333 \Omega \\
R_{C} & =\frac{1 \times 1}{1+1+1}=0.333 \Omega
\end{aligned}
$$

Figure 24
The resistances 0.333Ω and 2Ω are in series and 0.333Ω and 1Ω are in series.

The resistances 2.333Ω and 1.333Ω are in parallel its equivalent resistance is

Figure 25

$$
=\frac{2.333 \times 1.333}{2.333+1.333}=\frac{3.109}{3.666}=0.848 \Omega
$$

Total network resistance is $1+0.333+0.848=2.181 \Omega$

$$
I=\frac{1}{2.181}=0.458 A
$$

Q 7) Calculate the current in the 40Ω resistance of the circuit shown in Figure shown in Figure 5 using star delta transformation.

Figure 26

Solution:
As shown in Figure 23 there is delta network between ABC, convert this to star network

$$
\begin{aligned}
& R_{A}=\frac{20 \times 5}{30}=3.333 \Omega \\
& R_{B}=\frac{5 \times 5}{30}=0.833 \Omega \\
& R_{C}=\frac{20 \times 5}{30}=3.333 \Omega
\end{aligned}
$$

Figure 27

Figure 28
The total resistance of the network is

$$
\begin{aligned}
& =3.333+\frac{40.833 \times 3.333}{40.833+3.333}=3.333 \Omega \\
& =3.333+\frac{136}{44.163}=3.333+3.08+\Omega \\
& =6.41 \Omega
\end{aligned}
$$

The total current flowing in the network is

$$
I_{1}=\frac{4}{6.41}=0.624 A
$$

Using branch current division method the current in 40Ω is

$$
I_{3}=0.624 A \frac{3.333}{44.163}=0.047 A
$$

Q 8) Determine the currents supplied by the each battery using star-delta transformation

Figure 29
Solution:
As shown in Figure 29 there is delta network between ABC, convert this to star network

$$
\begin{aligned}
& R_{A}=\frac{4 \times 6}{15}=1.6 \Omega \\
& R_{B}=\frac{4 \times 5}{15}=1.3 \Omega \\
& R_{C}=\frac{6 \times 5}{15}=2 \Omega
\end{aligned}
$$

Figure 30
In the circuit $30,3 \Omega$ and 1.6Ω are in series and also 2Ω and 1.3Ω are in series. The details are as shown in Figure 31

Figure 31

Figure 32

$$
I_{3}=I_{1}+I_{2}
$$

KVL for loop 1

$$
\begin{aligned}
15-4.6 I_{1}-2 I_{3} & =0 \\
15-4.6 I_{1}-2 I_{1}-2 I_{2} & =0 \\
15-6.6 I_{1}-2 I_{2} & =0 \\
6.6 I_{1}+2 I_{2} & =15
\end{aligned}
$$

KVL for loop 2

$$
\begin{aligned}
20-3.3 I_{2}-2 I_{3} & =0 \\
20-3.3 I_{2}-2 I_{1}-2 I_{2} & =0 \\
20-5.3 I_{2}-2 I_{1} & =0 \\
2 I_{1}+5.3 I_{2} & =20
\end{aligned}
$$

Simultaneous equations are

Figure 33
Solution:

Figure 34

24.3Ω
Figure 35

$$
\begin{aligned}
R_{A B} & =1.87+\frac{6.94 \times 3.55}{6.94 \times 3.55} \\
& =38+24.3+80=142.3 \Omega
\end{aligned}
$$

0.2 Question Papers

Question Papers

2019-Jan (2017 scheme ECE) Find the equivalent resistance between a and b as shown in Figure 36 using star delta transformation

Figure 36: JAN-2019-Question Paper
Solution:
As shown in Figure 36 there is delta network between $8 \Omega 5 \Omega$ and 4Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{8 \times 5}{8+4+5}=2.35 \Omega \\
R_{B} & =\frac{5 \times 4}{17}=1.17 \Omega \\
R_{C} & =\frac{8 \times 4}{17}=1.88 \Omega
\end{aligned}
$$

Figure 37

Figure 38
As shown in Figure 38 there is delta network between $6 \Omega 5.17 \Omega$ and 5.35Ω, convert this to star
network

$$
\begin{aligned}
R_{A} & =\frac{6 \times 5.17}{6+5.17+5.35}=1.87 \Omega \\
R_{B} & =\frac{5.17 \times 5.35}{16.52}=1.67 \Omega \\
R_{C} & =\frac{6 \times 5.35}{16.52}=1.94 \Omega
\end{aligned}
$$

Figure 39

Figure 40

$$
\begin{aligned}
R_{A B} & =1.87+\frac{6.94 \times 3.55}{6.94 \times 3.55} \\
& =1.87+2.34=4.21 \Omega
\end{aligned}
$$

2019-DEC Determine the resistance between A and B of the network shown in Figure 41.

Figure 41: 2019-DEC
Solution:

Figure 42
As shown in Figure 42 there is delta network between $2 \Omega 3 \Omega$ and 6Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{10 \times 30}{10+10+30}=6 \Omega \\
R_{B} & =\frac{10 \times 30}{50}=6 \Omega \\
R_{C} & =\frac{10 \times 10}{50}=2
\end{aligned}
$$

Figure 43

Figure 44
As shown in Figure 44 there is delta network between $6 \Omega 12.5 \Omega$ and 24.5Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{6 \times 12.5}{6+12.5+24.5}=1.74 \Omega \\
R_{B} & =\frac{6 \times 24.5}{43}=3.41 \Omega \\
R_{C} & =\frac{12.5 \times 24.5}{43}=7.12 \Omega
\end{aligned}
$$

Figure 45

Figure 46

$$
\begin{aligned}
R_{A B} & =1.74+\frac{9.41 \times 19.62}{9.41 \times 19.62}=1.74+6.36 \\
& =8.1 \Omega
\end{aligned}
$$

Also by observation its a wheatstone bridge because the ratio is

$$
\frac{12.5}{12.5}=\frac{6}{6}=1
$$

Hence no current flows between E D

$$
R_{A B}=\frac{25 \times 12}{25 \times 12}=8.1 \Omega
$$

2019-DEC Determine the resistance between A and B of the network shown in Figure 41.

Figure 47: 2019-June-(2015-scheme-ECE)1
Solution:

Figure 48
As shown in Figure 48 there is star network between $2 \Omega 3 \Omega$ and 5Ω, convert this to star network

$$
\begin{aligned}
& R_{A B}=2+3+\frac{2 \times 3}{5}=5+1.2=6.2 \Omega \\
& R_{A E}=2+5+\frac{2 \times 5}{3}=7+3.3=10.3 \Omega \\
& R_{B E}=5+3+\frac{5 \times 3}{2}=8+7.5=15.5 \Omega
\end{aligned}
$$

Figure 49

$$
=\frac{10 \times 15.5}{10 \times 15.5}=6.07 \Omega
$$

Figure 50
As shown in Figure 50 there is a delta network between $6.2 \Omega 10.33 \Omega$ and 6.07Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{6.2 \times 10.33}{6.2+10.33+6.07}=2.83 \Omega \\
R_{B} & =\frac{6.2 \times 6.07}{22.6}=1.67 \Omega \\
R_{E} & =\frac{6.07 \times 10.33}{22.6}=2.77 \Omega
\end{aligned}
$$

Figure 51

Figure 52
As shown in Figure 52 there is a delta network between $2.83 \Omega 6 \Omega$ and 10.77Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{2.83 \times 6}{19.6}=0.87 \Omega \\
R_{E} & =\frac{2.83 \times 10.77}{19.6}=1.55 \\
R_{D} & =\frac{10.77 \times 6}{19.6}=3.3
\end{aligned}
$$

Figure 53

Figure 54
$=0.87+\frac{3.22 \times 7.3}{3.22+7.3}=0.87+2.23$
$=3.1 \Omega$

2018-Dec,2014-Dec Using star/delta transformation determine the resistance between M and N of the network shown in Figure 55.

Figure 55: 2018-DEC-(2015-scheme-ECE)1
Solution:

Figure 56
As shown in Figure 56 there is delta network between $2 \Omega 3 \Omega$ and 6Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{2 \times 3}{2+3+6}=0.545 \Omega \\
R_{B} & =\frac{3 \times 6}{11}=1.636 \Omega \\
R_{C} & =\frac{6 \times 2}{11}=1.1 \Omega
\end{aligned}
$$

Figure 57

Figure 58
As shown in Figure 59 there is delta network between $1.1 \Omega 5.636 \Omega$ and 5Ω, convert this to star
network

Figure 59

Figure 60
$R_{B}=\frac{1.195 \times 9.43}{1.195+9.43}=1.06 \Omega$

$$
R_{M N}=1+1.06+0.468=2.528 \Omega
$$

2015-Dec Find the equivalent resistance between A and B of the network shown in Figure 61 using StarDelta transformation.

Figure 61: 2015-DEC
Solution:

Figure 62
As shown in Figure 62 there is delta network between $15 \Omega 8 \Omega$ and 5Ω, and there is delta network
between $9 \Omega 9 \Omega$ and 9Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{15 \times 8}{28}=4.28 \Omega \\
R_{D} & =\frac{5 \times 8}{28}=1.42 \Omega \\
R_{C} & =\frac{15 \times 5}{28}=2.67 \Omega \\
R_{B} & =\frac{9 \times 9}{27}=3 \Omega \\
R_{E} & =\frac{9 \times 9}{27}=3 \Omega \\
R_{F} & =\frac{9 \times 9}{27}=3 \Omega
\end{aligned}
$$

Figure 63

Figure 64
15.67 and 14.42Ω are in parallel

$$
\begin{aligned}
& =\frac{15.67 \times 14.42}{15.67 \times 14.42}=7.51 \Omega \\
R_{A B} & =4.28+7.51+3=14.79 \Omega
\end{aligned}
$$

Figure 66: 2013-DEC1

Figure 67: 2013-DEC1

Figure 68: 2013-DEC1

Figure 69: 2013-DEC1

2013-DEC1 Using star/delta transformation determine the resistance between M and N of the network shown in Figure 65.

Figure 65: 2013-DEC1

2008-June Using star/delta transformation determine the resistance between M and N of the network shown in Figure 70.

Figure 70: 2008-June

Solution:
Solution:

Figure 71: 2008-June
As shown in Figure 71 there is delta network between A C D $5 \Omega 5 \Omega$ and 10Ω, and there is delta network between $\mathrm{B} \mathrm{C} \mathrm{E} 5 \Omega 5 \Omega$ and 10Ω, convert this to star network

$$
\begin{aligned}
R_{A} & =\frac{5 \times 5}{20}=1.25 \Omega \\
R_{C} & =\frac{5 \times 10}{20}=2.5 \Omega \\
R_{D} & =\frac{5 \times 10}{20}=2.5 \Omega \\
R_{B} & =\frac{5 \times 5}{20}=1.25 \Omega \\
R_{E} & =\frac{5 \times 10}{20}=2.5 \Omega \\
R_{F} & =\frac{5 \times 10}{20}=2.5 \Omega
\end{aligned}
$$

Figure 72: 2008-June22

Figure 73: 2008-June23

Figure 74: 2008-June24

$$
\begin{aligned}
R_{A B} & =1.25+3.33+1.25 \\
& =5.83 \Omega
\end{aligned}
$$

2007-July Using star/delta transformation determine the resistance between A and B of the network shown in Figure 75.

Figure 75: 2007-July
Solution:
As shown in Figure 75 there is star network between $6 \Omega 6 \Omega$ and 6Ω, convert this to star to delta network

$$
\begin{aligned}
& R_{A B}=6+6+\frac{6 \times 6}{6}=12+6=18 \Omega \\
& R_{A C}=6+6+\frac{6 \times 6}{6}=12+6=18 \Omega \\
& R_{B C}=6+6+\frac{6 \times 6}{6}=12+6=18 \Omega
\end{aligned}
$$

Figure 76: 2007-July
18Ω between AC and AB are in parallel

$$
=\frac{18 \times 18}{36}=9 \Omega
$$

Figure 77: 2007-July
9Ω and 9Ω are in series which is in parallel with 18Ω

$$
A B=18+\frac{9 \times 9}{18}=18+4.5=22.5 \Omega
$$

Using star/delta transformation determine the resistance between A and B of the network shown in Figure 78.

Figure 78
Solution:

Figure 79

Figure 80

Figure 81
$R_{P Q}=7+7.785+2=16.785 k \Omega$

