0.1 Superposition Theorem

In any linear bilateral network containing more than one independent source, the response in any element is equal to the algebraic sum of all the responses due to each independent source acting independently, setting all other independent sources to zero.

All the voltage sources are replaced by its internal resistance or simply by a short circuit and remove the current source from the circuit.

Proof:

Proof) In the circuit shown in Figure 1, using superposition theorem find the current I_{x}.

Figure 1
Solution:
By applying KVL for the circuit is as shown in Figure 2.

Figure 2

$$
\begin{aligned}
50 i_{1}+100\left(i_{1}+i_{2}\right)-8 & =0 \\
150 i_{1}+100 i_{2} & =8 \\
25 i_{2}+100\left(i_{2}+i_{1}\right)-5 & =0 \\
100 i_{1}+125 i_{2} & =5
\end{aligned}
$$

$$
\begin{aligned}
& 150 i_{1}+100 i_{2}=8 \\
& 100 i_{1}+125 i_{2}=5
\end{aligned}
$$

Solving the above equations $57 \mathrm{~mA},-5.71 \mathrm{~mA}$ The total Current in the 100 resistor is

$$
I=i_{1}+i_{2}=57 m A-5.71 \mathrm{~mA}=51.3 \mathrm{~mA}
$$

By considering a single voltage source, the circuit is redrawn and is as shown in Figure 2.

Q 1) In the circuit shown in Figure 5, using superposition theorem find the voltage across V_{2}.

Figure 5
Solution:
By considering a single voltage source the circuit is redrawn and is as shown in Figure 6.

Figure 6
The voltage across 5Ω resistor is

$$
V_{2}^{\prime}=5 \times \frac{10}{15}=3.333 \mathrm{~V}
$$

By considering a single current source the circuit is redrawn and is as shown in Figure 7

Figure 7
The current through 5Ω resistor using current division method is

$$
I=1 \times \frac{10}{15}=0.666 A
$$

The voltage across 5Ω resistor is

$$
V_{2}^{\prime \prime}=0.666 \mathrm{~A} \times \frac{10}{5+10}=3.333 \mathrm{~V}
$$

The total voltage across 5Ω resistor is

$$
V_{2}=V_{2}^{\prime}+V_{2}^{\prime \prime}=3.333+3.333=6.666 \mathrm{~V}
$$

Q 2) In the circuit shown in Figure 8, using superposition theorem find the voltage across v_{0}.

Figure 8

Solution:

By considering a single current source the circuit is redrawn and is as shown in Figure 9.

Figure 9
3 and 6Ω resistors are in parallel the total resistance in the network is

$$
R=\frac{3 \times 6}{3+6}=2 \Omega
$$

The current i_{1} is

$$
i_{1}=5 \frac{2}{6}=1.667 \mathrm{~A}
$$

By considering a single voltage source the circuit is redrawn and is as shown in Figure 10.

Figure 10
The current i_{2} is

$$
i_{2}=\frac{18}{9}=2 A
$$

2 A and 1.667 A are in opposite directions therefore net current is $1.667 A-2 A=-0.333 A$. Then the voltage v_{0} is

$$
v_{0}=-0.333 A \times 3=-1 V
$$

Q 3) In the circuit shown in Figure 11, using superposition theorem find the voltage across and current flowing through a $3.3 k \Omega$ resistor.

Figure 11

Solution:

By considering a single voltage source the circuit is redrawn and is as shown in Figure 12.

Figure 12
In the circuit $3.3 k \Omega$ and $4.7 k \Omega$ are in parallel, this combination is in series with $2 k \Omega$ resistor.

$$
R=\frac{4.7 \times 3.3}{4.7+3.3}=1.938 k \Omega
$$

Total resistance is $2 k \Omega+1.938 k \Omega=3.938 k \Omega$ current through using current division method is

$$
\begin{gathered}
I=\frac{8}{3.938 \mathrm{k} \Omega}=2.03 \mathrm{~mA} \\
I_{1}=2.03 \mathrm{~m} A \times \frac{1.938}{3.3}=1.192 \mathrm{~mA} \\
v_{1}=1.192 \mathrm{~mA} \times 3.3 \mathrm{k} \Omega=3.934 \mathrm{~V}
\end{gathered}
$$

By considering a single voltage source the circuit is redrawn and is as shown in Figure 13.

Figure 13
In the circuit $3.3 k \Omega$ and $2 k \Omega$ are in parallel, this combination is in series with $4.7 k \Omega$ resistor.

$$
R=\frac{2 \times 3.3}{2+3.3}=1.245 k \Omega
$$

Total resistance is $4.7 k \Omega+1.245 k \Omega=5.945 k \Omega$ current through using current division method is

$$
\begin{gathered}
I=\frac{5}{5.945 \mathrm{k} \Omega}=0.841 \mathrm{~mA} \\
I_{2}= \\
0.841 \mathrm{~m} A \times \frac{1.245}{3.3}=0.317 \mathrm{~mA}
\end{gathered}
$$

$$
v_{2}=0.317 \mathrm{~mA} \times 3.3 \mathrm{k} \Omega=1.0474 \mathrm{~V}
$$

The total voltage drop across $3.3 k \Omega$ resistor is
$V_{0}=v_{1}+v_{2}=3.934 V+1.0474 V=4.9774 V$
The total voltage current through $3.3 k \Omega$ resistor is
$I_{0}=I_{1}+I_{2}=1.192 m A+0.317 m A=1.509 m A$
Q 4) In the circuit shown in Figure 14, using superposition theorem find the voltage V_{1}.

Figure 14
By considering a single voltage source 12 V , the circuit is redrawn and is as shown in Figure 15.

Figure 15
By KVL

$$
\begin{gathered}
12-900 I_{1}=0 \\
I_{1}=\frac{12}{900}=13.33 m A \\
V_{1}=12-300 \times 13.33 m A=8 V
\end{gathered}
$$

By considering a single current source 5A, the circuit is redrawn and is as shown in Figure 16.

Figure 16
In the circuit 600Ω and 300Ω are in parallel, this combination is in series with 100Ω resistor.

$$
R=\frac{600 \times 300}{600+300}=200 \Omega
$$

current through using current division method is

$$
\begin{gathered}
I_{2}=5 m A \times \frac{200}{300}=3.333 \mathrm{~mA} \\
v_{2}=3.333 \mathrm{~mA} \times 300=1 \mathrm{~V}
\end{gathered}
$$

The total voltage V is

$$
V_{0}=v_{1}+v_{2}=8 V+1 V=9 V
$$

Q 5) Using superposition theorem find the voltage drop across 2Ω resistance of the circuit shown in Figure 17.

Figure 17

Solution:

By considering a single voltage source of 10 V the redrawn circuit is as shown in Figure 27. In the circuit 4 and 2Ω resistors are in series which is in parallel with 5Ω resistor.

$$
\begin{aligned}
& R=\frac{5 \times 6}{5+6}=2.727 \Omega \\
& I=\frac{10}{2.727}=3.666 A
\end{aligned}
$$

Using Current division method, the current through 2Ω resistor is

$$
I_{1}=3.666 \frac{5}{5+6}=1.666 \mathrm{~A}
$$

Figure 18

Figure 19
Network resistance is

$$
R=\frac{4 \times 2}{6}=1.333 \Omega
$$

Using Current division method, the current through 2Ω resistor is

$$
I_{1}=2 \frac{1.333}{2}=1.333 \mathrm{~A}
$$

Total Current in the 2Ω resistor is

$$
I=1.666 A+1.333 A \simeq 3 A
$$

Voltage across the 2Ω resistor is

$$
V=2 \times 3=6 V
$$

Q 6) In the circuit shown in Figure 20, using superposition theorem find the current I_{x}.

Figure 20

Solution:

By considering a single voltage source, the circuit is redrawn and is as shown in Figure 21.

Figure 21
By Converting voltage source to current source the circuit is as shown in Figure 22

Figure 22
The total resistance of the network is is

$$
\frac{1}{R_{t}}=\frac{1}{1}+\frac{1}{3}+\frac{1}{3}=1.6667
$$

$$
R_{t}=0.6 k \Omega
$$

The current $I x_{1}$ is

$$
I x_{1}=10 m a \times \frac{0.6 k \Omega}{3 k \Omega}=2 m A
$$

By Considering 15 mA current source then the redrawn circuit is as shown in Figure 23

Figure 23

Figure 24
The $1 \mathrm{k} \Omega$ and $3 \mathrm{k} \Omega$ resistances are in parallel

$$
\begin{gathered}
\frac{1}{R_{t}}=\frac{1}{1}+\frac{1}{3}=1.333 \\
R_{t}=0.750 \mathrm{k} \Omega
\end{gathered}
$$

This resistance is in series with $2 \mathrm{k} \Omega$ i.e $2.750 \mathrm{k} \Omega$
The current $I x_{2}$ is

$$
I x_{2}=15 m a \times \frac{2.750 k \Omega}{3.750 k \Omega}=11 m A
$$

By Considering 7.5 mA current source then the redrawn circuit is as shown in Figure ??

Figure 25

The $1 \mathrm{k} \Omega$ and $3 \mathrm{k} \Omega$ resistances are in parallel

$$
\frac{1}{R_{t}}=\frac{1}{1}+\frac{1}{3}=1.333
$$

$$
R_{t}=0.750 k \Omega
$$

This resistance is in series with $1 \mathrm{k} \Omega$ i.e $1.750 \mathrm{k} \Omega$
The current $I x_{3}$ is

$$
I x_{3}=-7.5 m a \times \frac{2 k \Omega}{3.750 k \Omega}=-4 m A
$$

The total current $I x$ is

$$
I x_{1}+I x_{1}+I x_{3}=2 m a+11 m A-4 m A=9 m A
$$

Q 7) In the circuit shown in Figure 26, using superposition theorem find the current flowing through a load resistance $R_{L}=10 \Omega$.

Figure 26
Solution:
By considering a single voltage source 22 V the redrawn circuit is as shown in Figure 27. In the circuit 12,4 and 10Ω resistors are in parallel.

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{12}+\frac{1}{4}+\frac{1}{10}=0.433 \\
R=2.3 \Omega
\end{gathered}
$$

2.3Ω resistor is in series with 5Ω. The net resistance in the circuit is 7.3Ω

The current I in the circuit is

$$
I=\frac{22}{7.3}=3.01 A
$$

Figure 27
The current through $R_{L}=10 \Omega$ using current division method is

$$
I=3.01 \times \frac{2.3}{10}=0.692 A
$$

By considering a single voltage source 48 V the redrawn circuit is as shown in Figure 28. In the circuit 5,4 and 10Ω resistors are in parallel.

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{5}+\frac{1}{4}+\frac{1}{10}=0.55 \\
R=1.818 \Omega
\end{gathered}
$$

1.818Ω resistor is in series with 12Ω. The net resistance in the circuit is 13.818Ω

The current I in the circuit is

$$
I=\frac{48}{13.818}=3.473 A
$$

Figure 28
The current through $R_{L}=10 \Omega$ using current division method is

$$
I=3.473 \times \frac{1.818}{10}=0.631 A
$$

By considering a single voltage source 12 V the redrawn circuit is as shown in Figure 29. In the circuit 5,12 and 10Ω resistors are in parallel.

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{5}+\frac{1}{12}+\frac{1}{10}=0.383 \\
R=2.611 \Omega
\end{gathered}
$$

2.611Ω resistor is in series with 4Ω. The net resistance in the circuit is 6.611Ω

The current I in the circuit is

$$
I=\frac{12}{6.611}=1.815 A
$$

Figure 29
The current through $R_{L}=10 \Omega$ using current division method is

$$
I=1.815 \times \frac{2.611}{10}=0.474 A
$$

The net current through $R_{L}=10 \Omega$ is

$$
I=0.692+0.631+0.474=1.797 A
$$

Q 8) In the circuit shown in Figure 30, using superposition theorem find the current i.

Figure 30
Solution:
By considering a single voltage source the circuit is redrawn and is as shown in Figure 31.

Figure 31
By applying KVL, around the loop

$$
\begin{gathered}
24-(3+2) i_{1}-3 i_{1}=0 \\
i_{1}=3 A
\end{gathered}
$$

By considering a single current source 7A, the circuit is redrawn and is as shown in Figure 32.

Figure 32
By applying node voltage analysis at node a

$$
-i_{2}-7+\frac{\left(V_{A}-3 i_{2}\right)}{2}=0
$$

Also we have

$$
-i_{2}=\frac{V_{A}}{3}
$$

$$
\begin{gathered}
V_{A}=-3 i_{2} \\
-i_{2} 7+\frac{\left(-3 i_{2}-3 i_{2}\right)}{2}=0 \\
-i_{2}=\frac{-7}{4} \\
i=i_{1}+i_{2}=1.25 A
\end{gathered}
$$

0.2 Question Papers

2020-Aug) Use superposition theorem to find I_{O} in the circuit shown in Figure 26.

Figure 33

Solution:

Figure 34

$$
\begin{gathered}
2 I_{2}+2\left(I_{1}+I_{2}\right)+6-12=0 \\
2 I_{1}+4 I_{2}+0 I_{3}=6 \\
2\left(I_{1}+I_{3}\right)+2 I_{3}-6=0 \\
2 I_{1}+0 I_{2}+4 I_{3}=6 \\
2 I_{1}+4 I_{2}+0 I_{3}=6 \\
2 I_{1}+0 I_{2}+4 I_{3}=6 \\
I_{1}=2 m A \\
4 I_{2}+0 I_{3}=2 \\
0 I_{2}+4 I_{3}=2
\end{gathered}
$$

On solving

$$
\begin{gathered}
I_{1}=2 m A, I_{2}=0.5 I_{3}=0.5 \\
I_{O}=I_{1}+I_{2}=2+0.5=2.5 \mathrm{~mA}
\end{gathered}
$$

Figure 35

$$
\begin{aligned}
2 I_{2}+2\left(I_{1}+I_{2}\right) & =0 \\
2 I_{1}+4 I_{2}+0 I_{3} & =0 \\
2\left(I_{1}+I_{3}\right)+2 I_{3} & =0 \\
2 I_{1}+0 I_{2}+4 I_{3} & =0 \\
2 I_{1}+4 I_{2}+0 I_{3} & =0 \\
2 I_{1}+0 I_{2}+4 I_{3} & =0
\end{aligned}
$$

$$
I_{1}=2 m A
$$

$$
4 I_{2}+0 I_{3}=-4
$$

$$
0 I_{2}+4 I_{3}=-4
$$

On solving

$$
I_{1}=2 m A, I_{2}=-1 I_{3}=-1
$$

$$
I_{O 1}=I_{1}+I_{2}=2-1=1 m A
$$

Figure 36

$$
I_{02}=\frac{12}{4}=3 m A
$$

Figure 37

$$
\begin{gathered}
I_{03}=\frac{6}{4}=1.5 m A \\
I_{O}=\quad I_{1}+I_{2}=1+3-1.5=2.5 m A
\end{gathered}
$$

2020-AugEE) Use superposition theorem to find I_{O} in the circuit shown in Figure 38.

Figure 38
Solution:

Figure 39

$$
\begin{aligned}
\frac{V_{1}-3}{7}+\frac{V_{1}-V_{2}}{15}-2 & =0 \\
V_{1}[0.1428+0.067]-0.428-0.0 .067 V_{2}-2 & =0 \\
0.21 V_{1}-0.067 V_{2} & =2.428
\end{aligned}
$$

$$
\begin{aligned}
\frac{V_{2}}{5}+\frac{V_{2}-V_{1}}{15}-4 I_{X} & =0 \\
-0.067 V_{1}+V_{2}[0.5+0.067]-4 I_{X} & =0 \\
-0.067 V_{1}+0.567 V_{2}-4 I_{X} & =0
\end{aligned}
$$

$$
I_{X}=\frac{V_{2}}{5}=0.2 V_{2}
$$

$$
-0.067 V_{1}+0.567 V_{2}-4 I_{X}=0
$$

$$
-0.067 V_{1}+0.567 V_{2}-4\left(0.2 V_{2}\right)=0
$$

$$
-0.067 V_{1}+1.367 V_{2}=0
$$

$$
\begin{aligned}
0.21 V_{1}-0.067 V_{2} & =2.428 \\
-0.067 V_{1}+1.367 V_{2} & =0
\end{aligned}
$$

On Solving

$$
\begin{aligned}
V_{1} & =11.745 \quad V_{2}=0.575 \\
I_{X} & =\frac{V_{2}}{5}=\frac{0.575}{5}=0.115
\end{aligned}
$$

Figure 40

$$
\begin{array}{r}
\frac{V_{1}}{7}+\frac{V_{1}-V_{2}}{15}-2=0 \\
V_{1}[0.1428+0.067]-0.067 V_{2}-2=0 \\
0.21 V_{1}-0.067 V_{2}=2 \\
0.21 V_{1}-0.067 V_{2}=2 \\
-0.067 V_{1}+1.367 V_{2}=0
\end{array}
$$

On Solving

$$
\begin{aligned}
V_{1} & =9.675 \quad V_{2}=0.474 \\
I_{X 1} & =\frac{V_{2}}{5}=\frac{0.474}{5}=0.095
\end{aligned}
$$

Figure 41

$$
\begin{aligned}
\frac{V_{1}-3}{22}+\frac{V_{1}}{5}-4 I_{x} & =0 \\
V_{1}[0.045+0.2]-0.136-4 \frac{V_{1}}{5} & =0 \\
0.245 V_{1}-0.8 V_{1} & =0.136 \\
-0.555 V_{1} & =0.136 \\
V_{1} & =-\frac{0.136}{0.555}=-0.245 \\
I_{X 2}=\frac{V_{1}}{5}=\frac{-0.245}{5} & =-0.049
\end{aligned}
$$

2018-DEC-17Scheme) For the circuit shown in Figure find the current $I_{X} 42$ using superposition theorem.

Figure 42

Solution:

Figure 43

$$
\begin{aligned}
20-6 I_{X}-2 I_{X} & =0 \\
I_{X} & =\frac{20}{8}=2.5 A
\end{aligned}
$$

Figure 44

$$
\begin{aligned}
& \frac{V_{1}}{4}+\frac{V_{1}-2 I_{x}}{2}-5=0 \\
& (0.25+0.5) V_{1}-I_{x}=5
\end{aligned}
$$

$$
\begin{aligned}
& I_{x}=\frac{V_{1}}{4}=0.25 V_{1} \\
& {[0.75] V_{1}-0.25 V_{1} }=5 \\
& V_{1}=\frac{5}{0.5}=10 \\
& I_{x}=\frac{V_{1}}{4}=\frac{10}{4}=2.5
\end{aligned}
$$

Verification

Figure 45

$$
\begin{aligned}
\frac{V_{1}-20}{4}+\frac{V_{1}-2 I_{x}}{2}-5 & =0 \\
(0.25+0.5) V_{1}-I_{x} & =10
\end{aligned}
$$

$$
I_{x}=\frac{V_{1}}{4}
$$

$$
\begin{aligned}
{[0.75] V_{1}-0.25 V_{1} } & =10 \\
V_{1} & =\frac{10}{0.5}=20
\end{aligned}
$$

$$
I_{x}=\frac{V_{1}}{4}=\frac{20}{4}=5
$$

2017-June) Using superposition theorem find the current in 6Ω resistor in circuit shown in Figure 46.

Figure 46

Solution:

Figure 47

$$
18-1 I+2 V_{X}-6 I=0
$$

$$
V_{X}=I
$$

$$
\begin{aligned}
& 18-1 I+2 V_{X}-6 I=0 \\
& 18-1 I+2(I)-6 I=0
\end{aligned}
$$

$$
I=\frac{18}{5}=3.6
$$

Figure 48

$$
\begin{array}{r}
\frac{V_{1}}{1}+\frac{V_{1}+2 V_{x}}{6}-3=0 \\
(1+0.166) V_{1}+0.333 V_{x}=3
\end{array}
$$

Figure 49
2016-June) Using superposition theorem find the current I in circuit shown in Figure 50.

Figure 50
Solution:

Figure 51

$$
\begin{aligned}
24-5 I-3 I & =0 \\
I & =\frac{24}{8}=3
\end{aligned}
$$

Figure 52

$$
\begin{array}{r}
\frac{V_{1}}{3}+\frac{V_{1}-3 I}{2}-7=0 \\
(0.333+0.5) V_{1}-1.5 I=7
\end{array}
$$

$$
\begin{gathered}
I=\frac{V_{1}}{3} \\
{[0.8333] V_{1}-0.5 V_{1}=7} \\
V_{1}=\frac{7}{0.333}=21 \\
I=\frac{V_{1}}{3}=\frac{21}{3}=8
\end{gathered}
$$

Total current I in the circuit is

$$
I=3-8=-5 A
$$

Which is flowing opposite to the direction.
Verification

Figure 53

$$
\begin{aligned}
& \frac{V_{1}-24}{3}+\frac{V_{1}-3 I}{2}-7=0 \\
& (0.333+0.5) V_{1}-1.5 I=15 \\
& I=\frac{V_{1}-24}{3}=0.333 V_{1}-8
\end{aligned}
$$

$$
\begin{aligned}
(0.833) V_{1}-1.5\left(0.333 V_{1}-8\right) & =15 \\
(0.833) V_{1}-0.5 V_{1}+12 & =15 \\
0.333 V_{1} & =3 \\
V_{1} & =\frac{3}{0.333}=9
\end{aligned}
$$

$$
I=\frac{V_{1}-24}{3}=\frac{9-24}{3}=-5
$$

2015-Dec) Find I_{X} for the circuit shown in Figure 54 using superposition theorem.

Figure 54
Solution:

Figure 55

$$
\begin{aligned}
\frac{V-12}{2}+\frac{V}{4}+\frac{V}{4} & =0 \\
V & =6
\end{aligned}
$$

$$
I=\frac{V}{4}=\frac{6}{4}=1.5
$$

Figure 56

$$
\begin{aligned}
\frac{V}{2}+\frac{V-12}{4}+\frac{V}{4} & =0 \\
V & =3
\end{aligned}
$$

$$
I=\frac{V-12}{4}=\frac{3-12}{4}=-2.25
$$

2Ω

Figure 57
$\begin{aligned} \frac{V}{2}+\frac{V}{4}+\frac{V-8}{4} & =0 \\ V & =2\end{aligned}$

$$
I=\frac{V}{4}=\frac{2}{4}=0.5
$$

Total current I_{X} is

$$
I=1.5-2.25+0.5=-0.25
$$

Verification

Figure 58

$$
\begin{aligned}
& \frac{V-12}{2}+\frac{V-12}{4}+\frac{V-8}{4}=0 \\
& V=11 \\
& I=\frac{V-12}{4}=\frac{11-12}{4}=-0.25
\end{aligned}
$$

2011-June) Find V using the principle of superposition in network shown in Figure 59.

Figure 59
Solution:

Figure 60

$$
\begin{aligned}
& \frac{V_{1}-4}{5}+\frac{V_{1}}{5}+\frac{V_{1}-2 V_{A}}{1}=0 \\
& V_{1}(0.2+0.2+1)-2 V_{A}=0.8 \\
& V_{A}=3\left(\frac{V_{1}-4}{5}\right)=0.6 V_{1}-2.4
\end{aligned}
$$

$$
\begin{aligned}
1.4 V_{1}-2\left(0.6 V_{1}-2.4\right) & =0.8 \\
1.4 V_{1}-1.2 V_{1}+4.8 & =0.8 \\
0.2 V_{1} & =-4 \\
V_{1} & =-\frac{4}{0.2}=-20
\end{aligned}
$$

$$
V_{A}=3\left(\frac{V_{1}-4}{5}\right)=0.6(-20)-2.4=-14.4
$$

Figure 61

$$
-2.5 V_{1}+1.7 V_{1}=0
$$

$$
\begin{aligned}
& \frac{V_{1}}{3}+\frac{V_{1}-V_{2}}{2}-2=0 \\
&(0.33+0.5) V_{1}-0.5 V_{2}=2 \\
&(0.833) V_{1}-0.5 V_{2}=2 \\
& \frac{V_{2}-V_{1}}{2}+\frac{V_{2}}{5}+\frac{V_{2}-2 V_{A}}{1}=0 \\
&-0.5 V_{1}+(0.2+0.5+1) V_{1}-2 V_{A}= \\
&-0.5 V_{1}+1.7 V_{1}-2 V_{A}= \\
& V_{A}=V_{1}
\end{aligned}
$$

$$
\begin{array}{r}
0.833 V_{1}-0.5 V_{2}=2 \\
-2.5 V_{1}+1.7 V_{1}=0
\end{array}
$$

$$
V_{1}=20.46 \quad V_{2}=30.1
$$

Total Voltage V_{A} is

$$
V_{A}=20.46 \quad V_{2}=-14.4+20.46=6.06 \mathrm{~V}
$$

