2020-Aug) Use superposition theorem to find I_{O} in the circuit shown in Figure ?? .

Figure 1

Solution:

Figure 2

$$
\begin{array}{r}
2 I_{2}+2\left(I_{1}+I_{2}\right)+6-12=0 \\
2 I_{1}+4 I_{2}+0 I_{3}=6 \\
2\left(I_{1}+I_{3}\right)+2 I_{3}-6=0 \\
2 I_{1}+0 I_{2}+4 I_{3}=6 \\
2 I_{1}+4 I_{2}+0 I_{3}=6 \\
2 I_{1}+0 I_{2}+4 I_{3}=6
\end{array}
$$

$$
I_{1}=2 m A
$$

$$
\begin{aligned}
& 4 I_{2}+0 I_{3}=2 \\
& 0 I_{2}+4 I_{3}=2
\end{aligned}
$$

On solving

$$
I_{1}=2 m A, I_{2}=0.5 I_{3}=0.5
$$

$$
I_{O}=I_{1}+I_{2}=2+0.5=2.5 m A
$$

Figure 3

$$
\begin{aligned}
2 I_{2}+2\left(I_{1}+I_{2}\right) & =0 \\
2 I_{1}+4 I_{2}+0 I_{3} & =0 \\
2\left(I_{1}+I_{3}\right)+2 I_{3} & =0 \\
2 I_{1}+0 I_{2}+4 I_{3} & =0 \\
& \\
2 I_{1}+4 I_{2}+0 I_{3} & =0 \\
2 I_{1}+0 I_{2}+4 I_{3} & =0
\end{aligned}
$$

$$
\begin{gathered}
I_{1}=2 m A \\
4 I_{2}+0 I_{3}=-4 \\
0 I_{2}+4 I_{3}=-4
\end{gathered}
$$

On solving

$$
I_{1}=2 m A, I_{2}=-1 I_{3}=-1
$$

$$
I_{O 1}=I_{1}+I_{2}=2-1=1 m A
$$

Figure 4

$$
I_{02}=\frac{12}{4}=3 m A
$$

Figure 5

$$
I_{03}=\frac{6}{4}=1.5 \mathrm{~mA}
$$

$$
I_{O}=I_{1}+I_{2}=1+3-1.5=2.5 \mathrm{~mA}
$$

2020-AugEE) Use superposition theorem to find I_{O} in the circuit shown in Figure 6.

Figure 6

Solution:

Figure 7

$$
\begin{aligned}
\frac{V_{1}-3}{7}+\frac{V_{1}-V_{2}}{15}-2 & =0 \\
V_{1}[0.1428+0.067]-0.428-0.0 .067 V_{2}-2 & =0 \\
0.21 V_{1}-0.067 V_{2} & =2.428 \\
\frac{V_{2}}{5}+\frac{V_{2}-V_{1}}{15}-4 I_{X} & =0 \\
-0.067 V_{1}+V_{2}[0.5+0.067]-4 I_{X} & =0 \\
-0.067 V_{1}+0.567 V_{2}-4 I_{X} & =0
\end{aligned}
$$

$$
I_{X}=\frac{V_{2}}{5}=0.2 V_{2}
$$

$$
-0.067 V_{1}+0.567 V_{2}-4 I_{X}=0
$$

$$
-0.067 V_{1}+0.567 V_{2}-4\left(0.2 V_{2}\right)=0
$$

$$
-0.067 V_{1}+1.367 V_{2}=0
$$

$$
0.21 V_{1}-0.067 V_{2}=2.428
$$

$$
-0.067 V_{1}+1.367 V_{2}=0
$$

On Solving

$$
\begin{aligned}
V_{1} & =11.745 \quad V_{2}=0.575 \\
I_{X} & =\frac{V_{2}}{5}=\frac{0.575}{5}=0.115
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{1}}{7}+\frac{V_{1}-V_{2}}{15}-2=0 \\
& V_{1}[0.1428+0.067]-0.067 V_{2}-2=0 \\
& 0.21 V_{1}-0.067 V_{2}= 2 \\
& \\
& 0.21 V_{1}-0.067 V_{2}=2 \\
&-0.067 V_{1}+1.367 V_{2}=0
\end{aligned}
$$

On Solving

$$
\begin{aligned}
V_{1} & =9.675 \quad V_{2}=0.474 \\
I_{X 1} & =\frac{V_{2}}{5}=\frac{0.474}{5}=0.095
\end{aligned}
$$

Figure 9

$$
\begin{aligned}
\frac{V_{1}-3}{22}+\frac{V_{1}}{5}-4 I_{x} & =0 \\
V_{1}[0.045+0.2]-0.136-4 \frac{V_{1}}{5} & =0 \\
0.245 V_{1}-0.8 V_{1} & =0.136 \\
-0.555 V_{1} & =0.136 \\
V_{1} & =-\frac{0.136}{0.555}=-0.245
\end{aligned}
$$

$$
I_{X 2}=\frac{V_{1}}{5}=\frac{-0.245}{5}=-0.049
$$

2018-DEC-17Scheme) For the circuit shown in Figure find the current $I_{X} 10$ using superposition theorem.

Figure 10
Solution:

Figure 11

$$
\begin{aligned}
20-6 I_{X}-2 I_{X} & =0 \\
I_{X} & =\frac{20}{8}=2.5 \mathrm{~A}
\end{aligned}
$$

Figure 12

$$
\begin{array}{r}
\frac{V_{1}}{4}+\frac{V_{1}-2 I_{x}}{2}-5=0 \\
(0.25+0.5) V_{1}-I_{x}=5
\end{array}
$$

$$
I_{x}=\frac{V_{1}}{4}=0.25 V_{1}
$$

$$
\begin{aligned}
{[0.75] V_{1}-0.25 V_{1} } & =5 \\
V_{1} & =\frac{5}{0.5}=10
\end{aligned}
$$

$$
I_{x}=\frac{V_{1}}{4}=\frac{10}{4}=2.5
$$

Verification

Figure 13

$$
\begin{aligned}
\frac{V_{1}-20}{4}+\frac{V_{1}-2 I_{x}}{2}-5 & =0 \\
(0.25+0.5) V_{1}-I_{x} & =10
\end{aligned}
$$

$$
\begin{aligned}
I_{x}= & \frac{V_{1}}{4} \\
{[0.75] V_{1}-0.25 V_{1} } & =10 \\
V_{1} & =\frac{10}{0.5}=20
\end{aligned}
$$

$$
I_{x}=\frac{V_{1}}{4}=\frac{20}{4}=5
$$

2017-June) Using superposition theorem find the current in 6Ω resistor in circuit shown in Figure 14.

Figure 14

Solution:

Figure 15

$$
18-1 I+2 V_{X}-6 I=0
$$

$$
V_{X}=I
$$

$$
\begin{aligned}
& 18-1 I+2 V_{X}-6 I=0 \\
& 18-1 I+2(I)-6 I=0
\end{aligned}
$$

$$
I=\frac{18}{5}=3.6
$$

Figure 16

$$
\begin{array}{r}
\frac{V_{1}}{1}+\frac{V_{1}+2 V_{x}}{6}-3=0 \\
(1+0.166) V_{1}+0.333 V_{x}=3
\end{array}
$$

$$
\begin{gathered}
V_{x}=V_{1} \\
1.166 V_{1}+0.33 V_{1}=3 \\
V_{1}=\frac{3}{1.5}=2 \\
I_{x}=\frac{V_{1}}{4}=\frac{10}{4}=2.5
\end{gathered}
$$

Figure 17
2016-June) Using superposition theorem find the current I in circuit shown in Figure 18.

Figure 18
Solution:

Figure 19

$$
\begin{aligned}
24-5 I-3 I & =0 \\
I & =\frac{24}{8}=3
\end{aligned}
$$

Figure 20

$$
\begin{aligned}
\frac{V_{1}}{3}+\frac{V_{1}-3 I}{2}-7 & =0 \\
(0.333+0.5) V_{1}-1.5 I & =7
\end{aligned}
$$

$$
\begin{gathered}
I=\frac{V_{1}}{3} \\
{[0.8333] V_{1}-0.5 V_{1}=7} \\
V_{1}=\frac{7}{0.333}=21 \\
I=\frac{V_{1}}{3}=\frac{21}{3}=8
\end{gathered}
$$

Total current I in the circuit is

$$
I=3-8=-5 A
$$

Which is flowing opposite to the direction.
Verification

Figure 21

$$
\begin{aligned}
& \frac{V_{1}-24}{3}+\frac{V_{1}-3 I}{2}-7=0 \\
& (0.333+0.5) V_{1}-1.5 I=15 \\
& I=\frac{V_{1}-24}{3}=0.333 V_{1}-8
\end{aligned}
$$

$$
\begin{aligned}
(0.833) V_{1}-1.5\left(0.333 V_{1}-8\right) & =15 \\
(0.833) V_{1}-0.5 V_{1}+12 & =15 \\
0.333 V_{1} & =3 \\
V_{1} & =\frac{3}{0.333}=9
\end{aligned}
$$

$$
I=\frac{V_{1}-24}{3}=\frac{9-24}{3}=-5
$$

2015-Dec) Find I_{X} for the circuit shown in Figure 22 using superposition theorem.

Figure 22
Solution:

Figure 23

$$
\begin{aligned}
\frac{V-12}{2}+\frac{V}{4}+\frac{V}{4} & =0 \\
V & =6
\end{aligned}
$$

$$
I=\frac{V}{4}=\frac{6}{4}=1.5
$$

Figure 24

$$
\begin{aligned}
\frac{V}{2}+\frac{V-12}{4}+\frac{V}{4} & =0 \\
V & =3
\end{aligned}
$$

$$
I=\frac{V-12}{4}=\frac{3-12}{4}=-2.25
$$

2Ω

Figure 25

$$
\begin{aligned}
\frac{V}{2}+\frac{V}{4}+\frac{V-8}{4} & =0 \\
V & =2
\end{aligned}
$$

$$
I=\frac{V}{4}=\frac{2}{4}=0.5
$$

Total current I_{X} is

$$
I=1.5-2.25+0.5=-0.25
$$

Verification

Figure 26

$$
\begin{aligned}
& \frac{V-12}{2}+\frac{V-12}{4}+\frac{V-8}{4}=0 \\
& V=11 \\
& I=\frac{V-12}{4}=\frac{11-12}{4}=-0.25
\end{aligned}
$$

2011-June) Find V using the principle of superposition in network shown in Figure 27.

Figure 27
Solution:

Figure 28

$$
\begin{aligned}
& \frac{V_{1}-4}{5}+\frac{V_{1}}{5}+\frac{V_{1}-2 V_{A}}{1}=0 \\
& V_{1}(0.2+0.2+1)-2 V_{A}=0.8 \\
& V_{A}=3\left(\frac{V_{1}-4}{5}\right)=0.6 V_{1}-2.4
\end{aligned}
$$

$$
\begin{aligned}
1.4 V_{1}-2\left(0.6 V_{1}-2.4\right) & =0.8 \\
1.4 V_{1}-1.2 V_{1}+4.8 & =0.8 \\
0.2 V_{1} & =-4 \\
V_{1} & =-\frac{4}{0.2}=-20
\end{aligned}
$$

$$
V_{A}=3\left(\frac{V_{1}-4}{5}\right)=0.6(-20)-2.4=-14.4
$$

Figure 29

$$
\begin{gathered}
\frac{V_{1}}{3}+\frac{V_{1}-V_{2}}{2}-2=0 \\
(0.33+0.5) V_{1}-0.5 V_{2}=2 \\
(0.833) V_{1}-0.5 V_{2}=2 \\
\frac{V_{2}-V_{1}}{2}+\frac{V_{2}}{5}+\frac{V_{2}-2 V_{A}}{1}=0 \\
-0.5 V_{1}+(0.2+0.5+1) V_{1}-2 V_{A}= \\
-0.5 V_{1}+1.7 V_{1}-2 V_{A}= \\
V_{A}=V_{1} \\
-2.5 V_{1}+1.7 V_{1}=0 \\
0.833 V_{1}-0.5 V_{2}=2 \\
-2.5 V_{1}+1.7 V_{1}=0 \\
V_{1}=20.46 V_{2}=30.1
\end{gathered}
$$

Total Voltage V_{A} is

$$
V_{A}=20.46 \quad V_{2}=-14.4+20.46=6.06 \mathrm{~V}
$$

2014-July Find the voltage across 3Ω resistor using superposition theorem for the circuit shown in Figure 30

Figure 30: 2014-July-Question Paper
Solution:
By considering 6 Volt supply the circuit is redrawn which is as shown in Figure 31

Figure 31
Voltage across 3Ω resistor is

$$
V_{1}=\frac{6}{3+1.5} 3=4 V
$$

By considering 18 Volt supply the circuit is redrawn which is as shown in Figure 32

Figure 32
The network resistance is

$$
R_{t}=6+\frac{2 \times 3}{2+3}=7.2
$$

The total current flowing in the network is

$$
I=\frac{18}{R_{t}}=2.5 A
$$

Current through 3Ω resistor is

$$
I=2.5 \frac{1.2}{3}=1 \mathrm{~A}
$$

Voltage across 3Ω resistor is

$$
V_{2}=1 \times 3=3 \mathrm{~V}
$$

By considering 2A current source the circuit is redrawn which is as shown in Figure 33

Figure 33

Figure 34
The network resistance is

$$
R_{t}=\frac{1}{6}+\frac{1}{2}+\frac{1}{3} \approx 1 \Omega
$$

Current through 3Ω resistor is

$$
I=1 \frac{2}{3}=0.6666 \mathrm{~A}
$$

Voltage across 3Ω resistor is

$$
V_{3}=-0.666 \times 3=-2 V
$$

The overall Voltage across 3Ω resistor by considering all the voltage sources is

$$
V=V_{1}+V_{2}+V_{3}=4+3-2=5 V
$$

2012-DEC Using superposition theorem obtain the response I for the circuit shown in Figure 35

Figure 35: 2012-DEC-Question Paper
Solution:
By considering Voltage source the circuit is redrawn which is as shown in Figure 36

Figure 36
There is no current flows in Voltage across 2Ω resistor. Current through inductor is

By KVL

$$
\begin{gathered}
I_{1}(j 2-j 1)+8 \angle 135=0 \\
I_{1}=-\frac{8 \angle 135}{j 2-j 1} \times j 2=-\frac{8 \angle 135}{j 1} \times j 2 \\
I_{1}=-8 \angle 135
\end{gathered}
$$

By considering Current source of 2 A the circuit is redrawn which is as shown in Figure 37

Figure 37

By considering 20 V Voltage source the circuit is redrawn which is as shown in Figure 36

Figure 40

By using current division method the current through 10Ω resistance is

$$
\begin{aligned}
& \frac{V_{1}}{10}+\frac{V_{1}}{-j 5}+\frac{V_{1}}{j 15}=\frac{20}{j 15} \\
& V_{1}[0.1+j 0.2-j 0.0666]=-j 1.333 \\
& V_{1}[0.1+j 0.1334]=-j 1.333 \\
& 0.1666 \angle 53.14 V_{1}=-1.333 \angle 90 \\
& V_{1}=\frac{-1.333 \angle 90}{0.1666 \angle 53.14} \\
&=-8 \angle 36.86 \\
& I=\frac{-8 \angle 36.86}{10}=-0.8 \angle 36.86=-0.64-j 0.48
\end{aligned}
$$

Figure 41
By using current division method the current through 10Ω resistance is

$$
\begin{aligned}
\frac{V_{2}}{10}+\frac{V_{2}}{-j 5}+\frac{V_{2}}{j 15} & =\frac{10 \angle 90}{-j 5} \\
V_{2}[0.1+j 0.2-j 0.0666] & =2 \angle 180 \\
V_{2}[0.1+j 0.1334] & =-2 \\
0.1666 \angle 53.14 V_{2} & =-2 \\
V_{2} & =\frac{-2}{0.1666 \angle 53.14} \\
& =-12 \angle-53.14
\end{aligned}
$$

The total current by considering both the sources is $I_{2}=\frac{-12 \angle-53.14}{10}=-1.2 \angle-53.14=-0.72+j 0.96$

$$
\begin{aligned}
I & =I_{1}+I_{2}=-0.64-j 0.48-0.72+j 0.96 \\
& =-1.36+j 0.48=1.422 \angle 160.56
\end{aligned}
$$

2011-December Determine the current through Z_{3} using superposition theorem for the circuit shown in Figure 42

Figure 42: 2011-December-Question Paper
Solution:
By considering single voltage $10 \angle 0$, the circuit is redrawn which is as shown in Figure 36

Figure 43
By applying node voltage method

$$
\begin{aligned}
& V_{1}\left[\frac{1}{1+1 j}+\frac{1}{1+j 2}+\frac{1}{1-j 1}\right]=\frac{10}{1+j 1} \\
& V_{1}\left[\frac{1-j 1}{2}+\frac{1+j 1}{2}+\frac{1-j 2}{3}\right]=\frac{10}{1+j 1}
\end{aligned}
$$

$V_{1}[0.5-j 0.5+0.5+j 0.5+0.33-j 0.666]=\frac{10}{1+j 1}$

$$
\begin{gathered}
V_{1}[1.333-j 0.666]=7.07 \angle-45 \\
V_{1} 1.5 \angle-26.54=7.07 \angle-45 \\
V_{1}=\frac{7.07 \angle-45}{1.5 \angle-26.54}=4.713 \angle-18.46
\end{gathered}
$$

Current through Z_{3} is

$$
\begin{gathered}
I_{1}=\frac{V_{1}}{1+j 2}=\frac{4.713 \angle-18.46}{2.23 \angle 63.43} \\
I_{1}=2.1 \angle-81.89
\end{gathered}
$$

By considering single voltage $10 \angle 0$, the circuit is redrawn which is as shown in Figure ??

Figure 44
By applying node voltage method

$$
\begin{gathered}
V_{2}\left[\frac{1}{1+1 j}+\frac{1}{1+j 2}+\frac{1}{1-j 1}\right]=\frac{10 \angle-60}{1+j 1} \\
V_{2}\left[\frac{1-j 1}{2}+\frac{1+j 1}{2}+\frac{1-j 2}{3}\right]=\frac{10 \angle-60}{1+j 1} \\
V_{2}[0.5-j 0.5+0.5+j 0.5+0.33-j 0.666]=\frac{10 \angle-60}{1+j 1} \\
V_{2}[1.333-j 0.666]=7.07 \angle-15
\end{gathered}
$$

$$
\begin{gathered}
V_{2} 1.5 \angle-26.54=7.07 \angle-15 \\
V_{2}=\frac{7.07 \angle-15}{1.5 \angle-26.54}=4.713 \angle 11.53
\end{gathered}
$$

Current through Z_{3} is

$$
\begin{gathered}
I_{2}=\frac{V_{2}}{1+j 2}=\frac{4.713 \angle 11.53}{2.23 \angle 63.43} \\
I_{2}=2.1 \angle-51.9
\end{gathered}
$$

The total current by considering both the sources is

$$
\begin{gathered}
I_{2}=\frac{-12 \angle-53.14}{10}=-1.2 \angle-53.14=-0.72+j 0.96 \\
I=I_{1}+I_{2}=2.1 \angle-81.89+2.1 \angle-51.9 \\
\quad=0.29-j 2+1.29-j 1.65 \\
\quad=1.58-j 3.65=3.977 \angle-66.6
\end{gathered}
$$

2011-June Determine V_{A} using superposition theorem for the circuit shown in Figure 45

Figure 45: 2011-December-Question Paper
Solution:
By considering single voltage 4 volts, the circuit is redrawn which is as shown in Figure 36

Figure 46
By applying KVL for the loops

$$
\begin{gathered}
5 i_{1}+5\left(i_{1}-i_{2}\right)-4=0 \\
10 i_{1}-5 i_{2}=4 \\
\\
V_{A}=-3 i_{1}
\end{gathered}
$$

$$
\begin{aligned}
1 i_{2}+5\left(i_{2}-i_{1}\right)+2 V_{A} & =0 \\
-5 i_{1}+6 i_{2}+2\left(-3 i_{1}\right) & =0 \\
-11 i_{1}+6 i_{2} & =0 \\
11 i_{1}-6 i_{2} & =0
\end{aligned}
$$

$$
\Delta=\left|\begin{array}{ll}
10 & -5 \\
11 & -6
\end{array}\right|=-60+55=-5
$$

$$
i_{1}=\frac{\left|\begin{array}{rr}
4 & -5 \\
0 & -6
\end{array}\right|}{\Delta}=\frac{-24}{-5}=4.8 A
$$

$$
V_{A}=-3 i_{1}=-3 \times 4.8=14.4 V
$$

By considering single current source 2A, the circuit is redrawn which is as shown in Figure 37

Figure 47
By applying KCL (Node analysis)
For Node V_{1}

$$
\begin{aligned}
V_{1}\left[\frac{1}{3}+\frac{1}{2}\right]-\frac{V_{2}}{2}-2 & =0 \\
0.833 V_{1}-0.5 V_{2} & =2
\end{aligned}
$$

For Node V_{2}
For Node $V_{A}=V_{1}$

$$
\begin{aligned}
V_{2}\left[\frac{1}{1}+\frac{1}{5}+\frac{1}{2}\right]-\frac{V_{1}}{2}-\frac{2 V_{A}}{1} & =0 \\
V_{2}[1+0.2+0.5]-0.5 V_{1}-\frac{2 V_{1}}{1} & =0 \\
-2.5 V_{1}+1.7 V_{2} & =0 \\
2.5 V_{1}-1.7 V_{2} & =0
\end{aligned}
$$

Simultaneous equations are

$$
\begin{gathered}
0.833 V_{1}-0.5 V_{2}=2 \\
2.5 V_{1}-1.7 V_{2}=0 \\
\Delta=\left|\begin{array}{cc}
0.833 & -0.5 \\
2.5 & -1.7
\end{array}\right|=-1.416+1.25=-0.166 \\
V_{1}=\frac{\left|\begin{array}{cc}
2 & -0.5 \\
0 & -1.7
\end{array}\right|}{\Delta}=\frac{-3.4}{-0.166}=20.4 \\
\text { By Superposition theorem }
\end{gathered}
$$

$$
V_{1}=-14.4+20.4=6 \mathrm{~V}
$$

2000-August Find the current through $R_{L}=7.5 \Omega$, using superposition theorem as shown in Figure 48

Figure 48: 2000-August-Question Paper
Solution:
Replace the voltage source by short circuit. 2Ω and 2Ω are in parallel which is in series with 4Ω. The details are as shown in Figure 49

Figure 49

$$
\begin{gathered}
2 \Omega \| 2 \Omega=1 \Omega \\
4 \Omega+1 \Omega=5 \Omega
\end{gathered}
$$

5Ω and 5Ω are in parallel

Figure 50
The current through $5 R_{L}$ using current division method is

$$
I_{L 1}=10 A \frac{2.5}{2.5+7.5}=2.5 A
$$

By removing the current source the circuit is as shown in Figure 51

Figure 51
Apply KVL and solve for loop currents

$$
I_{L}=10 A \frac{2.5}{2.5+7.5}=2.5 A
$$

$$
\begin{aligned}
12.5 I_{1}-7.5 I_{2}+0 I_{3} & =0 \\
-7.5 I_{1}+13.5 I_{2}-2 I_{3} & =0 \\
0 I_{1}-2 I_{2}+4 I_{3} & =20
\end{aligned}
$$

$$
\Delta=\left|\begin{array}{ccc}
12.5 & -7.5 & 0 \\
-7.5 & 13.5 & -2 \\
0 & -2 & 4
\end{array}\right|
$$

$$
12.5(54-4)+7.5(-30)=625-225=400
$$

$$
I_{1}=\frac{\left|\begin{array}{ccc}
0 & -7.5 & 0 \\
0 & 13.5 & -2 \\
20 & -2 & 4
\end{array}\right|}{\Delta}
$$

$20(15)=300$

$$
I_{1}=\frac{300}{400}=0.75
$$

$$
I_{1}=\frac{\left|\begin{array}{ccc}
12.5 & 0 & 0 \\
-7.5 & 0 & -2 \\
0 & 20 & 4
\end{array}\right|}{\Delta}
$$

$12.5(40)=500$

$$
I_{2}=\frac{500}{400}=1.25
$$

Current through R_{L} is

$$
I_{2}-I_{1}=1.25-0.75=0.5
$$

Current through R_{L} by considering both the sources is

$$
I_{L}=2.5+0.5=3 A
$$

