0.1 Thevenin/Norton Theorem

Q 2020-Aug) Find the Thevinin's and Norton's equivalent circuits at the terminals a-b for the circuit shown in Figure 1.

Figure 1
Solution:

Figure 2

$$
Z_{T H}=\frac{(8-j 5)(j 10)}{(8-j 5)+(j 10)}=10 \angle 26 \Omega
$$

Figure 3

$$
I_{S C}=I_{N}=4 \frac{8}{8-j 5}=3.39 \angle 32 \mathrm{~A}
$$

Figure 4
Q 2020-JUNE) Find the value of R_{L} for the network shown in Figure 5 that results in maximum power transfer. Also find the value of maximum power.

Figure 5
Solution:

Figure 6

$$
V_{x}=1 \times 10^{3} i
$$

Apply KVL around the loop

$$
\begin{aligned}
2 \times 10^{3} i+2 V_{x}-12 & =0 \\
2 \times 10^{3} i+2\left(1 \times 10^{3} i\right) & =12 \\
i & =\frac{12}{4 \times 10^{3}}=3 \mathrm{~mA}
\end{aligned}
$$

The voltage $V_{O C}$

$$
\begin{aligned}
V_{O C} & =12-1 \times 10^{3} i- \\
& =12-1 \times 10^{3} 3 m A \\
& =9 \mathrm{~V}
\end{aligned}
$$

Figure 7
KVL for the mesh 1

$$
\begin{aligned}
1 \times 10^{3} i_{1}-12 & =0 \\
i_{1} & =\frac{12}{1 \times 10^{3}}=12 \mathrm{~mA}
\end{aligned}
$$

KVL for the mesh 2

$$
\begin{aligned}
1 \times 10^{3} i_{2}+2 V_{x} & =0 \\
1 \times 10^{3} i_{2}+2\left(1 \times 10^{3} i_{1}\right) & =0 \\
1 \times 10^{3} i_{2}+24 & =0 \\
i_{2} & =-\frac{24}{1 \times 10^{3}}=24 \mathrm{~mA}
\end{aligned}
$$

The short circuit current is

$$
\begin{aligned}
I_{S C} & =i_{1}-i_{2}=12 m A-(-24 m A) \\
& =36 m A
\end{aligned}
$$

The Thevenin's resistance is

$$
\begin{aligned}
R_{T H} & =\frac{V_{O C}}{I_{S C}}=\frac{9}{36 m A} \\
& =250 \Omega
\end{aligned}
$$

Maximum power is transferred when $R_{L}=R_{T H}$. The current in the circuit is

$$
i=\frac{9}{250+250}=0.018 A
$$

Maximum power is

$$
P=i^{2} R_{L}=(0.018)^{2} \times 250=81 m W
$$

Figure 8
Q 2020-EE-JUNE) Determine the Thevenin's equivalent of the circuit shown in Figure ??

Figure 9
Solution:

$$
\begin{aligned}
\frac{V_{x}-4}{5}-0.1 V_{x} & =0 \\
0.2 V_{x}-0.1 V_{x} & =0.8 \\
V_{x} & =\frac{0.8}{0.1}=8 V=V_{O C}
\end{aligned}
$$

By shorting the terminals

$$
V_{x}=0
$$

Figure 10

$$
\begin{aligned}
\frac{V_{1}-4}{5}-\frac{V_{1}}{3} & =0 \\
0.2 V_{1}-0.8-0.33 V_{1} & =0 \\
-0.1333 V_{1} & =0.8 \\
V_{1} & =-\frac{0.8}{0.1333}=6 \mathrm{~V}
\end{aligned}
$$

$$
I_{S C}=\frac{V_{1}}{3}=\frac{6}{3}=2 A
$$

$$
Z_{S C}=\frac{V_{O C}}{I_{S C}}=\frac{8}{2}=4 \Omega
$$

Q 2019-DEC) Find the Thevenin and Norton equivalent for the circuit shown in Figure ?? with respect terminals a-b.

Figure 11
Solution:
Determine the Thevenin voltage $V_{T H}$. Apply KVL for the circuit shown in Figure 12.
By KVL around the loop

$$
\begin{aligned}
6 i-2 i+6 i-20 & =0 \\
10 i & =20 \\
i & =2 A
\end{aligned}
$$

Voltage across $\mathrm{AB} V_{O C}=V_{T H}$ is

$$
V_{O C}=6 i=6 \times 2=12 \mathrm{~V}
$$

Figure 12
When dependant voltage sources are present then Thevenin Resistance $R_{T H}$ is calculated
by determining the short circuit current at terminals AB:

Figure 13

$$
x-y=i_{1}
$$

KVL for loop x

$$
\begin{aligned}
12 x-2 i_{1}-6 y-20 & =0 \\
12 x-2(x-y)-6 y & =20 \\
10 x-4 y & =20
\end{aligned}
$$

KVL for loop y

$$
\begin{array}{r}
-6 x+16 y=0 \\
6 x-16 y=0
\end{array}
$$

Solving the following simultaneous equations

$$
\begin{gathered}
10 x-4 y=20 \\
6 x-16 y=0 \\
x=2.353 \quad y=0.882 \\
I_{S C}=y=0.882 A
\end{gathered}
$$

Thevenin's resistance is

$$
R_{T H}=\frac{V_{T H}}{I_{S C}}=\frac{12}{0.882}=13.6 \Omega
$$

Thevenin and Norton equivalent circuits as shown in Figure 14

Figure 14
Q 2019-DEC) Determine the current through the load resistance using Norton's theorem for the circuit shown in Figure 15.

Figure 15
Solution:

Figure 16

Figure 17

$$
\begin{array}{r}
V_{1}=4 \\
\frac{V_{2}-V_{1}}{3}+1=0 \\
\frac{V_{2}-4}{3}+1=0 \\
V_{2}-4+3=0 \\
V_{2}=1
\end{array}
$$

Figure 18
Q 2019-Dec) Obtain the Thevenin's equivalent network for the circuit shown in Figure 19.

Figure 19
Solution:

Figure 20

$$
\begin{aligned}
R_{T H} & =\frac{21(12+j 24)}{21+12+j 24}+\frac{50(30+j 60)}{50+30+j 60} \\
& =(12.26+j 6.356)+(30+j 15)) \\
& =42.26+j 21.356 \Omega
\end{aligned}
$$

Figure 21

$$
\begin{aligned}
I_{1} & =\frac{20}{33+j 24}=0.49 \angle-36 \\
I_{2} & =\frac{20}{80+j 60}=0.2 \angle-36.87
\end{aligned}
$$

$$
V_{A B}=I_{1} \times 21-I_{2} \times 50
$$

$$
=0.49 \angle-36 \times 21-0.2 \angle-36.87 \times 50
$$

$$
=0.49 \angle-36 \times 21-0.2 \angle-36.87 \times 50
$$

$$
=0.328 \angle-8.457
$$

$42.26+\mathrm{j} 21.356 \Omega$

Figure 22
Q 2019-JUNE) Obtain the Thevenin's equivalent across A and B for the circuit shown in Figure 23.

Figure 23
Solution:

$$
\begin{aligned}
R_{T H} & =j 10+\frac{(10+j 8)(-j 8)}{(10+j 8-j 8)} \\
& =j 10+(6.4-j 8) \\
& =6+j 2 \Omega
\end{aligned}
$$

Figure 24

$$
\frac{V_{1}-10}{(10+j 8)}+\frac{V_{1}}{(-j 8)}+\frac{V_{1}-3}{(j 10)}=0
$$

$$
\begin{array}{r}
V_{1}[0.078 \angle-38.66+0.125 \angle 90+0.1 \angle-90] \\
+0.78 \angle 141+0.3 \angle 90=0
\end{array}
$$

$$
0.0653 \angle-21.28 V_{1}=-0.9964 \angle 127.46
$$

$$
V_{1}=\frac{-0.9964 \angle 127.46}{0.0653 \angle-21.28}
$$

$$
V_{1}=15.25 \angle-31.26
$$

Figure 25

$$
\begin{aligned}
I_{S C} & =\frac{V_{1}-3}{(j 10)} \\
& =\frac{(15.25 \angle-31.26)-3}{j 10} \\
& =1.278 \angle-128.25
\end{aligned}
$$

Figure 29

$$
\begin{aligned}
V_{O C} & =I_{S C} Z_{N} \\
& =1.278 \angle-128.25(6+j 2) \\
& =8.08 \angle-109.815
\end{aligned}
$$

Figure 26
Q 2019-JUNE) Find the value of Z_{L} in the circuit shown in Figure 27 using maximum power transfer theorem and hence the maximum power.

Figure 27
Solution:

Figure 28

$$
\begin{aligned}
R_{T H} & =\frac{(5+j 6)(-j 8)}{(5+j 6-j 8)} \\
& =11-j 3.586 \Omega
\end{aligned}
$$

$$
\begin{aligned}
i & =\frac{50}{(5+j 6-j 8)} \\
& =9.28 \angle 21.8
\end{aligned}
$$

$$
\begin{aligned}
V_{O C} & =i(-j 8) \\
& =9.28 \angle 21.8(-j 8) \\
& =74.24 \angle-68.2
\end{aligned}
$$

Figure 30
Maximum Power is transferred when

$$
\begin{aligned}
R_{T H} & =R_{L} \\
11-j 3.586 \Omega & =11+j 3.586 \Omega
\end{aligned}
$$

Current through the load is

$$
\begin{aligned}
i_{L} & =\frac{74.24 \angle-68.2}{(11-j 3.586)+(11+j 3.586)} \\
& =3.374 A
\end{aligned}
$$

Maximum Power transferred through the load is

$$
\begin{aligned}
P_{L} & =i_{L}^{2} R_{L}=(3.374)^{2}(11+j 3.586) \\
& =131.7 \angle 18
\end{aligned}
$$

Q 2019-JAN) Find the value of R for which the power transferred across AB of the circuit shown in Figure 31 is maximum and the maximum power power transferred.

Figure 31

Solution:

First remove the R from the network and determine the $V_{T H}$ and $R_{T H}$ the details are as shown in Figure 32. The voltage across AB is the potential difference between AB.

$$
i_{1}=\frac{10}{3}
$$

The potential at A is

$$
V_{A}=\frac{10}{3} \times 2 \Omega=6.667 \mathrm{~V}
$$

$$
i_{2}=\frac{20}{7}
$$

The potential at B is

$$
V_{B}=\frac{20}{7} \times 3=8.571 V
$$

The potential at B is

$$
V_{A B}=V_{A}-V_{B}=6.667 V-8.571 V=-1.9 V
$$

Figure 32
To determine $R_{T H}$ the details are as shown in Figure 75. The 10Ω and 5Ω are in parallel which is in series with 2Ω.

$$
R_{T H}=(1 \| 2)+(3 \| 4)=0.667+1.714=2.381 \Omega
$$

Figure 33

Figure 34

$$
I_{L}=\frac{1.9 V}{2.381+2.381}=0.4 A
$$

$$
P_{L}=(0.4)^{2} \times 2.381=0.381 W
$$

Figure 35

2018 Dec JUNE 2013-JUNE MARCH-2000) Find the current through 6Ω resistor using Norton's theorem for the circuit shown in Figure 36.

Figure 36

Solution:

Determine the $V_{O C}$ at the terminal AB . When the resistor is removed from the terminals AB then the circuit is as shown in Figure 37. Apply KVL around the loop

$$
\begin{aligned}
4 I_{x}-6 I_{x}+6 I_{x}-20 & =0 \\
I_{x} & =\frac{20}{4}=5 \mathrm{~A} \\
V_{O C} & =5 \mathrm{~A} \times 6=30 \mathrm{~V}
\end{aligned}
$$

Figure 37
When the terminals AB short circuited then 6Ω resistor is also shorted and no current flows through resistor hence $I_{x}=0$ hence $6 I_{x}=0$. The circuit is as shown in Figure 38. The Norton current is

$$
I_{S C}=I_{N}=\frac{20}{4}=5 \mathrm{~A}
$$

Figure 38

$$
Z_{N}=\frac{V_{O C}}{I_{S C}}=\frac{30}{5}=6 \Omega
$$

The Thevenin and Norton circuits are as shown in Figure 39

Thevenin's Equivalent

Figure 39
Current through 5Ω resistor is

$$
I_{5}=5 A \frac{6}{6+5} \simeq 2.72 A
$$

Norton's Equivalent

Figure 40
2018 Dec 2011-JULY) Find the value of Z_{L} for which maximum power is transfer occurs in the circuit shown in Figure 41.

Figure 41
Solution:
Determine the $V_{O C}$ at the terminal AB . When the resistor is removed from the terminals AB then the circuit is as shown in Figure 42. Apply KVL around the loop

Figure 42

$$
Z_{T H}=\frac{(3-j 4) \times 10}{3-j 4+10}=2.973-j 2.162 \Omega
$$

Figure 43

Figure 44

$$
Z_{T H}=\frac{(3-j 4) \times 10}{3-j 4+10}=2.973-j 2.162 \Omega
$$

The maximum power is delivered when the load impedance is complex conjugatae of the network impedance. Thus

$$
Z_{L}=Z_{T H}^{*}=2.973+j 2.162 \Omega
$$

The current flowing in the load impedance is

$$
\begin{aligned}
I_{L} & =\frac{11.47 V \angle 95.73^{0}}{Z_{T H}+Z_{L}} \\
& =\frac{11.47 V \angle 95.73^{0}}{2.973-j 2.162+2.973+j 2.162} \\
& =\frac{11.47 V \angle 95.73^{0}}{2.973+2.973} \\
& =\frac{11.47 V \angle 95.73^{0}}{5.946}=1.929 \angle 95.73^{0}
\end{aligned}
$$

The power delivered in the load impedance is

$$
P_{L}=I_{L}^{2} \times R_{L}=1.922^{2} \times 2.973=11.46 \mathrm{~W}
$$

2018 Jan) Find the Thevenin equivalent for the circuit shown in Figure 45 with respect terminals a-b

Figure 45
Solution:
Determine the Thevenin voltage $V_{T H}$ for circuit shown in Figure 46. Apply KCL for the node V_{1}

$$
\begin{aligned}
V_{x}=V_{A} & \\
\frac{V_{A}-4}{2 k \Omega}-\frac{V_{x}}{4 k \Omega} & =0 \\
0.5 \times 10^{-3} V_{A}-0.25 \times 10^{-3} V_{A} & =2 \mathrm{~mA} \\
V_{A} & =8 \mathrm{~V} \\
V_{O C} & =8 \mathrm{~V}
\end{aligned}
$$

Figure 46
Determine the short circuit by shorting the output terminals AB for circuit shown in Figure 47. Apply KCL for the node V_{1}. It is observed that $V_{x}=0 V$,
hence dependent current source becomes zero.

$$
\begin{aligned}
\frac{V_{A}-4}{2 k \Omega}-\frac{V_{x}}{4 k \Omega}+\frac{V_{A}}{3 k \Omega} & =0 \\
0.5 \times 10^{-3} V_{A}+0.333 \times 10^{-3} V_{A} & =2 m A \\
0.833 V_{A} & =2 \\
V_{A} & =2.4 V \\
I_{S C}=\frac{2.4 V}{3 k \Omega}=0.8 m A &
\end{aligned}
$$

Figure 47

$$
Z_{T H}=\frac{V_{O C}}{I_{S C}}=\frac{8}{0.8 m A}=10 k \Omega
$$

Thevenin and Norton circuits are as shown in Figure 48

Figure 48

Q 2017-Jan) What value of impedance Z_{L} results in maximum power transfer condition for the network shown in Figure 49. Also determine the corresponding power.

Figure 49
Solution:

$$
\begin{aligned}
Z_{T H} & =\frac{V_{O C}}{I_{S C}}=2 \|(6+j 6) \Omega \\
& =\frac{2(6+j 6)}{(2+6+j 6)}=1.68+j 0.24
\end{aligned}
$$

Figure 50

$$
\begin{aligned}
i & =\frac{25}{8+j 6}=2.5 \angle-36.87 \\
V_{1} & =i \times(6+j 6)=2.5 \angle-36.87 \times(6+j 6) \\
& =21.21 \angle 8.31 V
\end{aligned}
$$

$$
V_{O C}=V_{A B}=V_{1}-25 \angle 50
$$

$$
=21.21 \angle 8.31-25 \angle 50
$$

$$
=16.82 \angle-73
$$

Figure 51

Figure 52

Figure 53
2017 Jan, 2014-JAN) Find the Thevenin's equivalent of the network as shown in Figure 54

Figure 54

Solution:

Using node analysis the following equations are written

$$
\begin{aligned}
& \frac{V_{1}}{6}+\frac{V_{1}-V_{2}}{5}-10=0 \\
& V_{1}[0.166+0.2]-0.2 V_{2}=10 \\
& 0.366 V_{1}-0.2 V_{2}=10 \\
& \frac{V_{2}-V_{1}}{5}-\frac{V_{x}}{4}=0 \\
& -0.2 V_{1}+0.2 V_{2}-0.25 V_{x}==0 \\
& V_{x}=\frac{V_{1}}{6} \times 3=0.5 V_{1} \\
& -0.2 V_{1}+0.2 V_{2}-0.25 V_{x}=0 \\
& -0.2 V_{1}+0.2 V_{2}-0.25 \times 0.5 V_{1}= \\
& -0.325 V_{1}+0.2 V_{2}=0 \\
& 0.366 V_{1}-0.2 V_{2}=10 \\
& -0.325 V_{1}+0.2 V_{2}=0 \\
& V_{1}=243.93 V \quad V_{2}=396.3 V \\
& V_{T H}=V_{2}=396.3 \mathrm{~V}
\end{aligned}
$$

Figure 55

Figure 56

$$
V_{x}=\frac{10 \times 5}{11} \times 3=13.636
$$

$$
\begin{aligned}
I_{S C} & =\frac{V_{x}}{4}+10 \times \frac{6}{11} \\
& =\frac{13.636}{4}+5.45=3.41+5.45 \\
& =8.86 \mathrm{~A}
\end{aligned}
$$

$$
R_{T H}=\frac{V_{T H}}{I_{S C}}=\frac{396.3}{13.636}=44.01 \Omega
$$

Q 2016-JUNE) Obtain the Thevenin's equivalent of the circuit shown in Figure 57 and thereby find current through 5Ω resistor connected between terminals A and B .

Figure 57
Solution:

$$
\begin{aligned}
R_{T H} & =j 10+\frac{(10)(-j 5)}{(10-j 5)} \\
& =j 10+(2-j 4) \\
& =2+j 6 \Omega
\end{aligned}
$$

B

Figure 58

$$
\frac{V_{1}-10}{(10)}+\frac{V_{1}}{(-j 5)}+\frac{V_{1}-3}{(j 10)}=0
$$

$$
\begin{array}{r}
V_{1}[0.1+0.2 \angle 90+0.1 \angle-90] \\
-1+0.3 \angle 90=0
\end{array}
$$

$$
\begin{aligned}
0.141 \angle-45 V_{1} & =1.04 \angle 163.3 \\
V_{1} & =\frac{1.04 \angle 163.3}{0.141 \angle-45} \\
V_{1} & =7.37 \angle-151.7
\end{aligned}
$$

Figure 59

$$
\begin{aligned}
I_{S C} & =\frac{V_{1}-3}{(j 10)} \\
& =\frac{(7.37 \angle-151.7)-3}{j 10} \\
& =1.01 \angle 110 \\
& \\
V_{O C} & =I_{S C} Z_{N} \\
& =1.01 \angle 110(2+j 6) \\
& =6.38 \angle-17
\end{aligned}
$$

Figure 60

$$
\begin{aligned}
I & =j \frac{6.38 \angle-17}{(7+j 6)} \\
& =0.69 \angle-57.6
\end{aligned}
$$

Q 2015-Jan) For the network shown in Figure 61 draw the Thevenin's equivalent circuit.

Figure 61

Solution:

Figure 62

$$
\begin{aligned}
-6 I_{x}+6 I_{x}-20+4 I_{x} & =0 \\
I_{x} & =\frac{20}{4} \\
& =5 A
\end{aligned}
$$

$$
\begin{aligned}
V_{O C} & =I_{x} \times 6=5 \times 6 \\
& =30 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
I_{S C} & =I_{N}=\frac{20}{4}=5 \mathrm{~A} \\
R_{T H} & =\frac{V_{O C}}{I_{S C}}=\frac{30}{5}=6 \Omega
\end{aligned}
$$

Figure 63

Figure 64: Thevinin Circuit

Q 2014-JUNE) Find the value of load resistance when maximum power is transferred across it and also find the value of maximum power transferred for the network of the circuit shown in Figure 65.

Figure 65
Solution:

Figure 66

$$
Z_{T H}=1.333+\frac{8 \times 4}{8+4}=1.333+2.6667=4 \Omega
$$

$$
\frac{V_{1}-5}{8}+\frac{V_{1}}{4}+\frac{V_{1}-2}{1.333}-2=0
$$

$$
V_{1}[0.125+0.25+0.75]-0.625-1.5-2=0
$$

$$
V_{1}[0.125+0.25+0.75]-0.625-1.5-2=\frac{4.125}{1.125}
$$

$$
V_{1}=3.666
$$

$$
\begin{gathered}
I_{S C}=\frac{V_{1}-2}{1.333}=\frac{3.6366-2}{1.333}=1.25 \\
V_{O C}=I_{S C} Z_{T H}=1.25 \times 4=5
\end{gathered}
$$

Figure 67

$$
P_{\max }=\frac{V_{O C}^{2}}{R_{L}}=\frac{5^{2}}{4}=6.25 \mathrm{~W}
$$

Thevenin's Equivalent

Figure 68
Q 2014-JUNE) Find the current through 16Ω resistor using Nortons theorem for the circuit shown in Figure 69.

Figure 69
Solution:
Determine the $V_{O C}$ at the terminal AB. When the resistor is removed from the terminals $A B$ then $I_{x}=0$

$$
V_{O C}=40 \mathrm{~V}
$$

Figure 70
Determine the $V_{O C}$ at the terminal AB by shorting output terminals AB. Apply node analysis for the circuit shown in Figure 71.

$$
I_{x}=\frac{V_{1}}{6}
$$

$$
\begin{aligned}
\frac{V_{1}-40}{10}+\frac{V_{1}}{6}+0.8 I_{x} & =0 \\
\frac{V_{1}}{10}+\frac{V_{1}}{6}+0.8 \frac{V_{1}}{6} & =0 \\
0.4 V_{1} & =4 \\
V_{1} & =10
\end{aligned}
$$

$$
I_{S C}=I_{N}=\frac{10}{6}=1.666 \mathrm{~A}
$$

Figure 71

$$
Z_{N}=\frac{V_{O C}}{I_{S C}}=\frac{40}{1.666}=24 \Omega
$$

Figure 72
Current through 16Ω resistor is

$$
I_{16}=1.666 A \frac{24}{24+16} \simeq 1 A
$$

Figure 73

Q 2014-JAN) State maximum power transfer theorem. For the circuit shown in Figure 74 what should be the value of R such that maximum power transfer can take place from the rest of the network. Obtain the amount of this power

Figure 74
Solution:

First remove the R from the network and determine the $V_{T H}$ and $R_{T H}$ the details are as shown in Figure 75. The voltage across AB is the potential difference between AB.
The potential at A is

$$
V_{A}=5 A \times 2 \Omega=10 V
$$

The potential at B is

$$
V_{B}=\frac{24}{15} \times 5=8 V
$$

The potential at B is

$$
V_{A B}=V_{A}-V_{B}=10 \mathrm{~V}-8 \mathrm{~V}=2 \mathrm{~V}
$$

Figure 75
To determine $R_{T H}$ the details are as shown in Figure 75. The 10Ω and 5Ω are in parallel which is in series with 2Ω.

$$
R_{T H}=2+(10| | 5)=2+3.333=3.333 \Omega
$$

Figure 76

Figure 77

Figure 81

Figure 82
The current through I_{L} is

$$
I_{L}=\frac{E_{T H}}{R_{T H}+R_{L}}=\frac{15}{2+13}=1 \mathrm{~A}
$$

Q 2001-Aug, 2011-JAN) Obtain Thevenin and Norton equivalent circuit at terminals AB for the network shown in Figure 83 Find the current through 10Ω resistor across AB.

Figure 83
Solution:

Figure 84

Figure 85
The Norton's current I_{N} is

$$
\begin{aligned}
I_{N} & =5 \angle 30 \times \frac{5+j 5}{10+5+j 5}=5 \angle 30 \times \frac{7.07 \angle 45}{15.81 \angle 18.43} \\
& =2.236 \angle 56.57^{\circ} A
\end{aligned}
$$

Figure 86

$$
\begin{aligned}
Z_{N} & =\frac{(5+j 5) \times(15+j 5)}{5+j 5+15+j 5} \\
& =\frac{7.07 \angle 45 \times 15.81 \angle 18.43}{22.36 \angle 26.56} \\
& =5 \angle 36.87^{\circ} \Omega
\end{aligned}
$$

The Norton Equivalent circuit is as shown in Figure 87

Figure 87
The Thevenin's Equivalent

$$
\begin{aligned}
V_{T H} & =I_{N} \times Z_{N}=2.236 \angle 56.57^{\circ} A \times 5 \angle 36.87^{\circ} \Omega \\
& =11.18 \angle 93.44^{\circ} \Omega
\end{aligned}
$$

$V_{T H}=I_{N} \times Z_{N}=2.236 \angle 56.57^{\circ}$ Atimes $5 \angle 36.87^{\circ} \Omega$
The Thevenin's Equivalent circuit is as shown in Figure 88

Figure 88
Current through load 10 is Ω

$$
\begin{aligned}
I_{L} & =\frac{11.18 \angle 93.43}{5 \angle 36.87+10}=\frac{11.18 \angle 93.43}{4+j 3+10} \\
& =\frac{11.18 \angle 93.43^{\circ}}{14.31 \angle 12.1} \\
& =0.781 \angle 81.34^{\circ}
\end{aligned}
$$

Q 2000-July) Obtain Thevenin and Norton equivalent circuit at terminals AB for the network shown in Figure 89. Find the current through 10Ω resistor across AB

Figure 89
Solution:

Figure 90

$$
\begin{aligned}
I(13+j 4)-10 & =0 \\
I(13.6 \angle 17.1) & =10
\end{aligned}
$$

$$
I=\frac{10}{13.6 \angle 17.1}
$$

$$
I=0.7352 \angle-17.1
$$

$$
\begin{aligned}
V_{T H} & =I \times(3+j 4)=(0.7352 \angle-17.1)(5 \angle 53.13) \\
& =3.676 \angle 36.03
\end{aligned}
$$

Figure 91

$$
\begin{aligned}
Z_{T H} & =-j 10+\frac{10 \times(3+j 4)}{10+3+j 4} \\
& =-j 10+\frac{30+j 40}{13+j 4}=10+\frac{50 \angle 53.13}{13.6 \angle 17.027} \\
& =-j 10+3.6762 \angle 36.027^{\circ} \Omega \\
& =-j 10+2.9731+j 2.1622 \Omega \\
& =2.9731-j 7.8378 \Omega \\
& =8.3828 \angle-69.227 \Omega
\end{aligned}
$$

Figure 92
Nortons equivalent circuit is $I_{S C}$ and $Z_{T H}$ which are as shown in Figure 93

$$
I_{S C}=\frac{V_{T H}}{Z_{T H}}=\frac{3.676 \angle 36.03}{8.3828 \angle-69.227}
$$

$$
=0.4385 \angle 105.257
$$

Figure 93

Q 2001-March) For the circuit shown in Figure
94 determine the load current I_{L} using Norton's theorem .

Figure 94
Solution:
Determine the open circuit voltage $V_{T H}$ for the circuit is as shown in Figure 101. Apply KVL around the loop

$$
\begin{aligned}
x(j 3-j 2)+5 \angle 90^{\circ}-10 \angle 0^{o} & = \\
j x+j 5-10 & = \\
j x & =10-j 5 \\
x & =-j(10-j 5) \\
x & =-5-j 10 \\
x & =11.18 \angle-116.56^{o}
\end{aligned}
$$

The voltage $V_{T H}$ is the voltage between AB

$$
\begin{aligned}
V_{T H} & =10 \angle 0^{o}-j 3 x \\
& =10-j 3(-5-j 10) \\
& =-20+j 15 \\
& =25 \angle 143.13^{o}
\end{aligned}
$$

Figure 95
The Thevenin impedance $Z_{T H}$ for the circuit is as shown in Figure ?? is

$$
\begin{aligned}
Z_{T H} & =\frac{j 3 \times(-j 2)}{j 1} \\
& =\frac{6}{j 1} \\
& =6 \angle-90^{\circ}
\end{aligned}
$$

Figure 96
The Thevenin circuit is as shown in Figure 97. The current through the load is

$$
\begin{aligned}
I_{L} & =\frac{25 \angle 143.13^{o}}{5-j 6}=\frac{25 \angle 143.13^{o}}{7.8 \angle-50.2^{o}} \\
& =3.2 \angle 193.3^{o} \\
P_{L} & =I_{L}^{2} R_{L} \\
P_{L} & =(3.2)^{2} \times 5 \\
& =51.2 \mathrm{~W}
\end{aligned}
$$

Figure 97

Figure 98

Q 2000-March) What should be the value of pure resistance to be connected across the terminals A and B in the network shown in Figure 99 so that maximum power is transferred to the load? What is the maximum power?

Figure 99
Solution:

The open circuit voltage $V_{T H}$ for the circuit is as shown in Figure 101 is

$$
\begin{aligned}
x(j 10-j 20)-100 \angle 0^{o} & = \\
x & =\frac{100 \angle 0^{o}}{-j 10} \\
x & =j 10 \\
V_{T H} & =j 10 \times-j 20 \\
& =200 \mathrm{~V}
\end{aligned}
$$

Figure 100
The Thevenin impedance $Z_{T H}$ for the circuit is as shown in Figure ?? is

$$
\begin{aligned}
Z_{T H} & =j 10+\frac{j 10 \times(-j 20)}{j 10-j 10} \\
& =j 10+\frac{200}{-j 10} \\
& =j 10+\frac{100 \angle 0^{\circ}}{-j 10} \\
& =j 10+j 20 \\
& =j 30
\end{aligned}
$$

Figure 101
The Thevenin circuit is as shown in Figure 102. The current through the load is

$$
\begin{aligned}
I_{L} & =\frac{200}{30+j 30}=\frac{200}{42.43 \angle 45^{\circ}} \\
& =4.714 \angle-45^{\circ} \\
P_{L} & =I_{L}^{2} R_{L} \\
& =(4.714)^{2} \times 30 \\
& =666.6 \mathrm{~W}
\end{aligned}
$$

Figure 102

Q 2000-FEB) What should be the value of pure resistance to be connected across the terminals A and B in the network shown in Figure 103 so that maximum power is transferred to the load? What is the maximum power?

Figure 103

Solution:

The open circuit voltage $V_{T H}$ for the circuit is as shown in Figure 101 is

$$
\begin{aligned}
x\left(5 \angle 60^{\circ}+10 \angle-30^{\circ}\right)+5 \angle 90^{\circ}-10 \angle 0^{\circ} & =0 \\
x(2.5+j 4.33+8.66-j 5)+j 5-10 & =0 \\
x(11.16-j 0.67) & =10-j 5 \\
& =\frac{10-j 5}{11.16-j 0.67} \\
& =\frac{11.18 \angle-26.56}{11.18 \angle-34.36} \\
& =1 \angle-23.13
\end{aligned}
$$

$$
\begin{aligned}
V_{A B} & =10 \angle 0^{\circ}-x\left(5 \angle 60^{\circ}\right) \\
& =10-(1 \angle-23.13)\left(5 \angle 60^{\circ}\right) \\
& =10-(5 \angle 36.87) \\
& =10-(4+j 3) \\
& =6-j 3 \\
V_{T H} & =6.7 \angle-26.56)
\end{aligned}
$$

Figure 104
The Thevenin impedance $Z_{T H}$ for the circuit is as shown in Figure 105 is

Figure 105

$$
\begin{aligned}
Z_{T H} & =\frac{5 \angle 60^{\circ} \times 10 \angle-30^{\circ}}{5 \angle 60^{\circ}+10 \angle-30^{\circ}} \\
Z_{T H} & =j 10+\frac{j 10 \times(-j 20)}{j 10-j 10} \\
& =\frac{50 \angle 30^{\circ}}{(2.5+j 4.33)+(8.66-j 53)} \\
& =\frac{50 \angle 30^{\circ}}{11.18 \angle-34.36^{\circ}} \\
& =4.47 \angle 26.56^{\circ} \\
& =4+j 2
\end{aligned}
$$

The load impedance is $4-\mathrm{j} 2 \Omega$
The Thevenin circuit is as shown in Figure 106. The current through the load is

$$
\begin{aligned}
I_{L} & =\frac{6.708 \angle-26.56}{4+j 2+4-j 2}=\frac{6.708 \angle-26.56}{8} \\
& =0.8385 \angle-26.65^{\circ} \\
P_{L} & =I_{L}^{2} R_{L} \\
& =(0.8385)^{2} \times 4 \\
& =2.8123 W
\end{aligned}
$$

Figure 106

Important: All the diagrams are redrawn and solutions are prepared. While preparing this study material most of the concepts are taken from some text books or it may be Internet. This material is just for class room teaching to make better understanding of the concepts on Network analysis: Not for any commercial purpose

